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Abstract 

The present paper goes beyond discussing publication bias as currently prevalent in the social 

sciences, including communication science, by arguing that an important cause of publication 

bias is the way in which traditional frequentist statistics force binary decisions. We propose 

an alternative approach through Bayesian statistics. Bayesian statistics provide various 

degrees of support for any hypothesis allowing balanced decisions and proper null hypothesis 

testing, which may prevent publication bias. Moreover, to test a null hypothesis becomes 

increasingly relevant in mediated communication and virtual environments. To illustrate our 

arguments, we re-analyzed three datasets of previously published data (i.e., media violence 

effects; mediated communication; visuospatial abilities across genders). Results are discussed 

in view of possible interpretations, which are more open to a content-related argumentation of 

the level of support by means of Bayes Factors. Finally, we discuss potential pitfalls of a 

Bayesian approach such as BF-hacking if cut-off values are going to be introduced as in 

classical hypothesis testing: “God would love a Bayes Factor of 3.01 nearly as much as a BF 

of 2.99” (cf. Rosnow & Rosenthal, 1989). Especially when BF values are small, replication 

studies and Bayesian updating are still necessary to draw conclusions. 

 [word count: 195]  
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Possible Solution to Publication Bias through Bayesian Statistics, including Proper Null 

Hypothesis Testing 

“Our unfortunate historical commitment to significance tests forces us to rephrase good 

questions in the negative, attempt to reject those nullities, and be left with nothing we can 

logically say about the questions.” (Killeen, 2005, p.346) 

Over the past few years, questionable research and publication practices in 

Psychology and Communication Science have been heavily debated (e.g., Rosenthal, 1979; 

Ferguson & Brannick, 2012; Simmons, Nelson, & Simonsohn, 2011; also see Introduction to 

this special issue). In the current paper, we go beyond the issue of favoring the publication of 

studies that find evidence for significant differences – publication bias – to discuss statistical 

approaches that may reduce the potential for such outcomes. Publication bias is the result of 

editors and journal policies to accept papers for publication that provide ‘support’ for the 

alternative hypothesis (Ha) rather than those that provide ‘support’ for the null hypothesis 

(H0), due to the rationale behind traditional frequentist testing. This process can create a state 

of affairs in which published studies do not represent the actual population of results in a 

scientific field and may create a distorted and spurious perception of the strength behavioral 

theories actually have (Ferguson & Heene, 2012). Evidence for the presence of publication 

bias is, by now, considerable and fairly widespread (e.g., Ferguson & Brannick, 2012; 

Harrison et al., in press; Kepes & McDaniel, 2013). Theory-supportive results are far more 

prevalent in psychology and psychiatry than in the hard sciences (91.5% versus 70.2% in the 

space sciences, for instance, Fanelli, 2010), yet such a high success rate is impossible to 

achieve given the fact that many experiments generally have low power. 

Publication bias occurs for several reasons. One may be because an apparently “true” theory 

may seem intuitively more valuable than one that appears falsified and is considered more 

interesting by journal editors. Second, researchers themselves may become (emotionally) 
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attached to their theories and engage in “obligatory replications” to further support their 

theories (Ioannidis, 2012). Third, and most critical for our argument in the current paper, 

weaknesses within null hypothesis significance testing do not properly allow for the 

falsification of theories. Null results are often seen as difficult to interpret and the product of 

low power, methodological problems in the study design or measurements issues, among 

others, and thus rejected. Such a rationale may drive some authors to add to a sample until 

their results become “statistically significant”, no matter how small in effect size, creating a 

correlational pattern between sample size and effect size in published results (Fritz, Scherndl, 

& Kühberger, 2012). Consequently, such studies are difficult to replicate, given that the 

initial results were the product of low power, not robust results (Schooler, 2011). Thus, 

traditional null hypothesis significance testing (NHST, also called frequentist statistics1) may 

contribute to publication bias by being ill-suited to 'support' a null hypothesis when, in fact, a 

null result might be the best conclusion for a test of a particular theory.     

Following the above, we argue that part of the issue in the occurrence of publication 

bias resides in traditional NHST, which forces scholars to binary decisions regarding the 

significance or non-significance of results. Whether or not a hypothesis finds support in the 

empirical data is based on the common acceptance of setting a hard boundary to force 

decisions to either accept or reject a hypothesis based on an arbitrary significance level in 

terms of a specific p-value <.05 (Bakker, van Dijk, & Wicherts, 2012; Wicherts, Borsboom, 

Kats, & Molenaar, 2006).2 Such rigid yes-no decisions may have tempted some scholars to 

push their results into desired significance levels (Brown & Bobkowski, 2011). However, 

                                                             
1 We refer in particular to the commonly used Fisher’s p-value (or Null Hypothesis Significance Testing, 

NHST). In fact, Fisher’s NHST does not have an alternative hypothesis (Ha) only the null hypothesis (H0). It 

only tests the strength of evidence by calculating the probability of the observed value (or more extreme) than 

the observed value, based on the assumption that H0 is true. The method in fact does not test H0 against Ha.  

2 The pre-set α significance levels to which the obtained p-value is tested may also set to be more strict (e.g., p < 

.01), varying among disciplines, research designs, sample sizes, or measurement levels. Then, similar reasoning 

regarding publication bias still holds.  
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measures can be taken to prevent publication bias through an alternative approach of 

statistical testing of hypotheses.  

We propose the use of Bayesian Factors (BFs) to arrive at a more transparent and 

flexible way of presenting statistical support for the hypothesis under consideration in 

comparison to others. With BFs one has to specify expectations before analyzing the data 

because the expectations are part of the input for the Bayesian analysis. This way, one has to 

be open and transparent about the specific hypotheses tested beforehand. The results of 

Bayesian testing then provide various degrees of support for any hypothesis, through 

Bayesian model selection of informative hypotheses (Hoijtink, 2011; Klugkist, Laudy, & 

Hoijtink, 2005) using Bayes Factors (Kass & Raftery, 1995). We illustrate this method in the 

current paper by re-analyzing three datasets of previously published data regarding 1) media 

violence effects with mixed interaction hypotheses; 2) mediated communication; and 3) 

visuospatial abilities across genders; also including explicit testing of null hypotheses.  

To avoid any misunderstandings: in the current paper, we are only interested in re-

analyzing the data as provided by the original authors; we will not evaluate the method or 

paper as such. The results are presented and discussed in view of possible interpretations. We 

highlight how a Bayesian approach is more open to a content-related argumentation of the 

level of support for a particular theoretical point of view, also if this is a null hypothesis. 

However, a Bayesian approach is not without fallacies. That is, the results of Bayesian 

statistics can lead to instrumental optimization of Bayes factors (i.e., “BF-hacking”) similar 

to the phenomenon of p-hacking in traditional NHST, especially when dichotomous cut-off 

values for evidentiary power (and thus “publishability”) are set. In line with the famous quote 

of Rosnow and Rosenthal (1989, p. 1277), we argue that “God would love a Bayes Factor of 

3.01 nearly as much as a BF of 2.99” (see section “BF-hacking”). Furthermore, not any BF-

value can be taken as conclusive support without careful consideration of its interpretation, 
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especially when BF values are small. To illustrate that ‘simply’ gathering more data does not 

in itself resolve low BF values, we present the results of a simulation study (see section 

“Sensitivity Analyses”). When low BFs occur, we argue, researchers should carefully interpret 

the results and conceptually replicate the findings. When results of a previous study are used 

as input for the new analyses (called Bayesian updating) results might gradually lead to 

higher BF values and hence a stronger support for a theory. Alternatively, updating might 

lead to the conclusion that support for a theory remains weak or perhaps even fails in the end.   

Before presenting our illustrative cases, we will outline the basics of a Bayesian 

approach in the next section.  

Testing a Null Hypothesis 

As widely discussed elsewhere and briefly summarized in the above, current journal 

policy and academic practice are prone to yielding publication bias. As argued, closely 

related to publication bias is the difficulty in testing a null hypothesis through frequentist 

statistics (NHST). Important to note is that rejecting H0 does not imply that the alternative 

hypothesis is supported. Also, failing to reject H0 does not imply support in favor of the null 

hypothesis. Unfortunately, non-significance is often misinterpreted as support for the null 

hypothesis (Bakker & Wicherts, 2011), which is abundantly illustrated in the Journal of 

Articles in Support of the Null Hypothesis: “offering an outlet for experiments that do not 

reach the traditional significance levels (p < .05).” (http://www.jasnh.com/). However, NHST 

is designed to reject the H0, not to support it. Hence, a decisive test to support the H0 and 

allowing to conclude that two means are similar (i.e., the chance that the means appear 

different is minimal), is lacking. For decades, behavioral scientists argue that H0-testing is 

irrelevant because they believe that any hypothesis can be stated in terms of an alternative 

hypothesis (e.g., Cohen, 1994; Krueger, 2001; Nickerson, 2000). That is, they state that 
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‘always, something is going on’, resulting in a primary focus on testing predictions regarding 

differences between groups or conditions and neglecting null hypotheses.  

In contrast, we argue that theoretically relevant null-hypotheses can be found 

increasingly in today’s mediated society and following future new technology applications. 

An illustrative case is “Sweetie” - the virtual Philippine girl who ‘caught’ pedophiles online 

(Hare, 2014; Jovanovic, 2013; Author(s)). The thousands of pedophiles engaged in 

conversations with her did not notice that she is not a real girl. An older example is the now 

famous Turing Test (Oppy & Dowe, 2011; Turing, 1950; Author(s)), while contemporary 

examples can be found in a continued blurring of mediated and real lives (e.g., Facebook 

romances). Likewise, virtually created services (e.g., e-health coaches, e-therapy, social 

robots) will increasingly be applied in healthcare and service professions due to limited 

resources and aging (Author(s)). Such innovations in communicative acts undoubtedly 

underscore the relevance of testing null hypotheses based on the assumption that mediated 

communication may create similar outcomes as non-mediated interaction (also see our 

examples below). However, testing such hypotheses through frequentist statistics will never 

provide clear support in favor of a null hypothesis; the best NHST can offer is a failure to 

reject H0. Therefore, we coin an alternative way of testing hypotheses that better fits the 

dynamics of contemporary science in view of the criticisms raised and which offers an 

appropriate way to test theory based hypotheses through Bayesian Factors, even if the theory 

is the null hypothesis.  

Bayesian Approach to Hypothesis Testing 

The Bayesian paradigm3 offers a very different view of hypothesis testing than the 

commonly applied frequentist testing against the null (e.g., Kaplan & Depaoli, 2013; V.E. 

Johnson, 2013; Van de Schoot et al., 2014). Instead of setting hard boundaries to force a 

                                                             
3 A full introduction to Bayesian statistics is beyond the scope of the current paper and we refer to Van de 

Schoot and Depaoli (2014) as a highly accessible start:  

http://www.ehps.net/ehp/index.php/contents/article/view/ehp.v16.i2.p75/26 ).  

http://www.ehps.net/ehp/index.php/contents/article/view/ehp.v16.i2.p75/26
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decision to either reject or fail to reject H0, Bayesian analyses provide various degrees of 

support for the hypotheses under consideration. Therefore, one can compare the support in 

the data for a set of pre-specified hypotheses, for example the null hypothesis versus the 

alternative hypothesis. A Bayes Factor (BF) can be computed for any combination of 

hypotheses using, for example, the software package BIEMS (Mulder, Hoijtink, & Klugkist, 

2010; Mulder, Klugkist, Van de Schoot, Meeus, Selfhout, & Hoijtink, 2009), but see also the 

software BayesFactor (Morey & Rouder, 2012) or JASP (Love et al., 2015). The result of 

testing hypotheses in these software packages are BF-values that represent the amount of 

evidence favoring one hypothesis over another. See Kass and Raftery (1995) for a general 

introduction to Bayes Factors, see Klugkist et al., (2005) for the computation of BFs between 

specific theory-driven hypotheses, and see van de Schoot et al. (2011) for an easy to read 

introduction and a comparison between BFs and NHST-results. Finally, see Romeijn and van 

de Schoot (2008) for a more philosophical discussion on Bayesian hypothesis testing.  

When one hypothesis is tested against an alternative hypothesis4 and the results 

indicate that BF = 1, the result implies that both hypotheses are equally supported by the data. 

However, when BF = 10, for example, the support for one hypothesis is ten times larger than 

the support for the alternative hypothesis. If the BF < 1, then, the alternative hypothesis is 

supported by the data. Balancing the differences in the degree of support can thus be used to 

judge the relevance of the null and alternative hypothesis in direct comparison (Johnstone, 

1990). Sellke et al. (2001) showed that the BF is preferable over a p-value when testing 

hypotheses because p-values tend to overestimate the evidence against the null hypothesis. 

Typically, the procedure of evaluating hypotheses consists of three steps. In the first 

step, the researcher should specify the set of hypotheses of interest using equality and 

inequality constraints. For example, H1 (mean1 > mean2 = mean3), H2 (mean1> mean2 < 

                                                             
4 The default setting of the BIEMS software is a .5/.5 prior probability and cannot be changed, otherwise the 

method to calculate the BF is not valid (see Klugkist, Laudy, & Hoijtink, 2005). 
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mean3), or the null hypothesis H0 (mean1 = mean2 = mean3). In the second step, each 

hypothesis is tested against the so-called unconstrained hypothesis (Hunc); a hypothesis 

without any restrictions, so not including any comparisons or assumptions. The BFs for each 

comparison (i.e., BF(H1, Hunc), BF(H2, Hunc) and BF(H0, Hunc) should be >1 indicating a 

certain level of support for each hypothesis compared to the “empty” unconstrained- 

hypothesis. In the third step, the BF can then be computed between the hypotheses of interest, 

for example BF(H1, H2), by simply dividing the BF of H1 by the BF of H2. The underlying 

details of Bayesian techniques will not be further addressed in this paper as they are clearly 

described in, among several others, Hoijtink (2011) and for software specific specifications 

see Mulder et al. (2009; 2010).  

The focus in the current paper is to present and discuss the results and implications of 

our re-analyses of previously published data which used frequentist NHST, now applying 

Bayesian model selection to test the same and additional hypotheses. In discussing the 

results, we highlight that Bayesian testing offers more balanced decisions illustrating our 

arguments. 

Illustrative Samples: Bayesian Analyses of Previously Published Data 

Study 1: Media Violence Effects 

We are very grateful to the authors Mario Gollwitzer and André Melzer to support our 

endeavor in providing the data underlying their paper titled Macbeth and the Joystick: 

Evidence for Moral Cleansing after Playing a Violent Video Game (Gollwitzer & Melzer, 

2012). Their main hypothesis concerns testing the phenomenon that people wish to cleanse 

themselves physically when their moral self has been threatened (i.e., the “Macbeth effect”). 

They argue that inexperienced players of violent video games may experience such a moral 

threat when they do play such a game, especially when the game involves violence against 
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humans. Experienced players may apply other strategies to alleviate any moral concerns, they 

argue.  

Hence, their first hypothesis (indicated by H1) reads: Inexperienced players feel more 

morally distressed after playing a violent game against humans (GTA) than after playing a 

violent game against objects (FlatOut), and experienced players feel less morally distressed 

no matter what kind of game they played. Subsequently, their second hypothesis (H2) reads: 

Inexperienced players prefer more hygiene products (i.e., “moral cleansing”) after playing a 

violent game against humans than after playing a violent game against objects, whereas this 

should not be the case among experienced (i.e., frequent) players. In our view, the second 

part of both H1 and H2 could also be formulated as an interesting null hypothesis, which we 

further discuss below. 

To test the hypotheses, seventy students played one of two violent video games 

(involving humans vs. objects) and were then asked to select 4 out of 10 gift products, half of 

which were hygiene products, and complete a questionnaire. To measure Moral distress, a 5-

item-questionnaire was applied (e.g., “Did your actions during the game give you a bad 

conscience?”). To measure Moral cleansing, the number of hygiene products selected were 

counted. In addition, measures were taken to assess Game experience through the mean index 

of four items referring to video game experience. Due to a skewed distribution, participants 

were dichotomized into inexperienced (n=36) and experienced (n=34), according to the 

Median (1.5) (Gollwitzer & Melzer, 2012).  

Results NHST vs. Bayes Factors 

Original results. The original ANOVA-results as presented in Gollwitzer and Melzer 

(2012) indicated that the null hypothesis should be rejected for both main effects (p<.01) as 

well as for the predicted interaction effect, F(1,66)=4.52, p=.04, ηp² =.06. Post-hoc analyses 

revealed that, as expected, inexperienced players felt more distressed after playing a violent 
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game against humans than after playing against objects, t(34)=−3.21, p <.01, d=1.08, whereas 

no such difference was found for experienced players, t(32)=−0.65, p=.52, d=0.22. However, 

as described in the above, NHST can only indicate that the null hypothesis should be rejected 

while no direct evidence for the alternative hypothesis (i.e., H1) can be provided.  

Testing H2, results of the ANOVA as presented in Gollwitzer and Melzer (2012) with the 

number of hygiene products (i.e., moral cleansing) as dependent variable yielded no 

significant main effects (p ≥ .12), but a significant interaction effect, F(1,66)=5.99, p=.02, ηp² 

=.08. As expected, inexperienced players selected more hygiene products after playing GTA 

than after playing FlatOut, t(34)=−2.03, p=.05, d=0.68, whereas no such difference was 

found for experienced players, t(32)=1.49, p=.15, d=0.51. These results indicate that the null 

hypothesis for the main effects and the interaction effect for the experienced players could 

not be rejected. Therefore, a direct test of the null hypothesis for the experienced players 

would be of interest.  

Bayesian model selection using Bayes Factors. Testing the same hypothesis H1 with 

a Bayesian approach using the software BIEMS, which proceeds in steps (see above), yielded 

partly similar results: The main effects model (Model 1) showed a Bayes Factor (BF) of 1.72, 

indicating that there is 1.72 times more support for the hypothesis that participants playing 

the human subjects violent game (GTA) report more moral distress than those playing against 

objects (Flatout) compared to the unconstrained model. Model 2, testing the main effect of 

the less experienced vs. the more experienced players also supported the previous results in 

that the less experienced players, experienced more moral distress with BF = 3.68. Given the 

magnitudes of BF, there is more support for the impact of experience with playing games on 

moral distress (Model 2) than for the impact of the type of game being played (Model 1), yet 

all BF values are low.  
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The interaction hypothesis (in fact the authors’ H1 in full) was tested in Model 3 and 

resulted in BF = 5.10 compared to the unconstrained model. Thus, the interaction hypothesis 

received 5.10/1.72 = 2.96 times more support compared to Model 1 and 5.10/3.68 = 1.38 

times more support compared to Model 2. This provides some direct support for the original 

conclusion that less experienced players who played GTA (against human subjects) 

experienced more moral distress than less experienced players who played Flatout (against 

objects).  

In addition, the second part of the interaction hypothesis H1 may be rephrased as a null 

hypothesis assuming no differences for the experienced players. The Bayesian analysis 

(Model 4) provides support for this H0: Experienced players report the same level of moral 

distress whether playing against humans or objects by BF = 2.53. Thus, this analysis adds to 

the original in being able to provide some direct support for an assumption that was not tested 

in the original paper with frequentist statistics. 

Testing the same H2 from the original paper with a Bayesian approach resulted in a 

somewhat different picture: The first main effects model (Model 1) showed a Bayes Factor of 

BF = 0.21 (i.e., no support for the main effect of game-type on moral cleansing) and the 

second main effects model (Model 2) showed little direct support for the hypothesis that less 

experienced players show more moral cleansing than more experienced players (Model 2): 

BF = 1.54. Hardly any stronger support is reflected in BF = 1.62 for the interaction 

hypothesis (Model 3), stating that less experienced players show more moral cleansing when 

playing GTA than when playing Flatout.  

As with H1, the second part of the interaction hypothesis H2 can be rephrased as a null 

hypothesis assuming no differences for the experienced players. However, no support is 

expressed through BF = 0.87 (i.e., BF < 1, see introduction above) (Model 4) for experienced 

players choosing the same amount of hygiene products across games. Thus, the Bayesian 
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result reaches a different conclusion for H2 than in the original paper. While the original 

authors speculated that experienced players may have picked less hygiene products after 

playing GTA than after playing Flatout to not wash away their joy (see p. 1360, left column), 

they did not test this hypothesis. We further discuss this below.  

We also explored two extra hypotheses: 1) more experienced players playing GTA 

choose more hygiene products than more experienced players playing Flatout or 2) vice 

versa. For the first, we found a Bayes Factor of 0.19, indicating more support for the 

unconstrained hypothesis than the hypothesis indicating a difference. For the second 

additional hypothesis, we found a Bayes Factor of 1.79, indicating little direct support for the 

hypothesis that the more experienced players playing Flatout actually choose more hygiene 

products than more experienced players playing GTA. 

Discussion Study 1 

We argue that the Bayesian re-analysis provides more nuanced support for the 

hypotheses, both as originally stated by Gollwitzer and Melzer (2012) and the null 

hypotheses. Based on the original results, the authors could only reject (or fail to reject) the 

null hypothesis (as is the premise of NHST) without direct support for their original and 

theory-driven hypotheses. Through Bayesian testing via model selection, we can now provide 

some direct support in favor of the hypothesis that less experienced players experience more 

moral distress when playing GTA against humans than when playing Flatout against objects. 

However, regarding the moral cleansing, the Bayesian results showed only slightly stronger 

support for the interaction hypothesis than for the main effect of being inexperienced. Hence, 

the evidence for less experienced players selecting more hygiene products when the game 

involved violence against humans compared to violence against objects, is not very clear and 

seems more strongly the result of level of experience rather than the humanness of the 

opponents in the game. It should be noted that the BF values obtained are relatively low and 
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therefore not very convincing. The theoretical implications for the phenomenon that 

inexperienced players wish to cleanse themselves physically when their moral self has been 

threatened, especially when the game involves violence against humans (Gollwitzer & 

Melzer, 2012), may therefore be reconsidered in stating that moral cleansing among 

inexperienced players occurs irrespective of the humanness of the opponent.  

The second part of both interaction hypotheses (H1, H2), in our view, reflected null 

hypotheses for the experienced players that were not tested in the original article. Here, the 

additional value of a Bayesian approach is evident: in the original article, the frequentist 

statistics (NHST) could not directly test null hypotheses while the Bayesian analysis could. 

The re-analysis with Bayesian procedures (i.e., Bayes Factors) however, provided some 

direct support in favor of H0, namely that experienced players are equally distressed in both 

game-conditions (H1, second part). However, no convincing evidence was found, through 

Bayesian analyses, for our added hypothesis that experienced players show equal levels of 

moral cleansing in both game-conditions but rather some support for a contrasting 

hypothesis. Actually, Figure 2 in the original paper shows that experienced players chose 

somewhat more hygiene products after playing against objects than against humans (i.e., in 

the opposite direction).  

The theoretical implications for Gollwitzer and Melzer’s (2012) claim that 

experienced players may apply other strategies to alleviate any moral concerns, may therefore 

be reconsidered. First, while the experienced players reported less moral distress than the 

inexperienced ones, irrespective of game-type, the question is whether the absence/low level 

of moral distress can be considered ‘moral threat’ at all, and thus, were there any moral 

concerns to alleviate through other strategies (than moral cleansing) among the experienced 

players? Second, because the added assumption of ‘similar levels of moral cleansing for both 

game-conditions among experienced players’, is not supported through Bayesian analyses, 
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the picking of hygiene products for the experienced players after playing against objects 

(rather than humans) may have not much in common with moral cleansing and asks for 

alternative explanations.  

In all, it seems that relying on p-values to test hypotheses through NHST may lead to 

overstating the support for one’s hypotheses while the Bayesian approach to the same data 

provided less convincing support through relatively low BF values. Furthermore, our 

Bayesian approach presented some challenges and refinements to the original results, 

implicating some interesting theoretical (re)considerations. It should be noted, however, that 

the BF values obtained are relatively low and warrant replication studies. 

 

Study 2: Null Hypothesis Testing in Mediated Communication 

We are very grateful to the authors Astrid Rosenthal-von der Pütten and Nicole 

Krämer for generously providing the data underlying their paper titled Investigations on 

empathy towards humans and robots using fMRI (2014). The study attempted to answer the 

question  whether humans show an emotional reaction towards a robot and whether this 

reaction differs from those towards a human. The theoretical introduction seems to provide 

arguments for both H0 and H1, illustrated for example in “Although we assume that there 

might be a common basis for emotional responses and empathy towards humans and robots, 

there is also evidence that the perception of robots and humans lead to different activation 

patterns in fMRI studies.” (p. 203). However, sufficient empirical evidence suggests that 

people respond socially and emotionally in similar ways as they to in human-human 

interaction when interacting with artificial entities such as avatars, mediated communication, 

virtual characters, and robots, as reported by Rosenthal-von der Pütten et al. (2014) as well as 

in our own research (Author(s)), though results regarding emotional responses to robots are 

scarce. The authors then conclude that “also for the domain of emotional reactions, 

similarities between HRI [Human-Robot-Interaction] and HHI [Human-Human-Interaction] 
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can be expected.” (p. 204). Hence, in our view, this study reflects a typical null hypothesis 

(‘robots evoke similar empathy as humans when treated badly’). Likewise, similarity in 

empathy for humans and robots is what the authors stress in their evaluation and press 

releases of the results. However, a non-significant test according to traditional probability 

testing cannot be taken as support for the null hypothesis (Gallistel, 2009; Rouder, Speckman, 

Sun, Morey & Iverson, 2009). Therefore, to conclude ‘similarity’ for humans and robots, we 

need a direct test of H0 which can be done with Bayesian analyses. 

The authors, in contrast, conclude their introduction with alternative hypotheses, 

summarized as follows: 

H1: Violent treatment of either human or robot will cause more negative (a) and less positive 

(b) emotions than affectionate treatment (and vice versa: less negative (c) and more positive 

emotions (d) after affectionate treatment of either one compared to violent treatment). 

H2: Humans in video clips will elicit stronger emotions (a), will be attributed more feelings to 

(b), and elicit higher empathy than robots in video clips, whether treated affectionately or 

violently (c).  

While the authors combined self-report with a more objective fMRI- measure, we will 

only re-analyze the self-report data. To test their hypotheses, videos of humans interacting 

with either another human (HHI), or a robot (HRI; an animal robot Plebo), and a neutral box 

(excluded form subsequent analyses) were created (images provided in Rosenthal-von der 

Pütten et al., 2014). These ‘interaction dyads’ refer to the first experimental factor. The 

second experimental factor was created by treating the partner in either a violent or 

affectionate way. The research design was a 3 (‘interaction dyads’) x 2 (violent or 

affectionate) within-subjects design with positive and negative affect (PANAS), attribution of 

emotionality, and empathy (both self-construed scales) as dependent variables. The 

hypotheses are tested with the same respondents as in the fMRI-scanner: Fourteen healthy 
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volunteers (nine female, five male), aged between 20-30 years (M = 23.50, SD = 2.93). After 

the fMRI session, participants saw the videos again on a computer screen and completed a 

questionnaire.  

Results NHST vs. Bayes Factors  

Original results. The original article of Rosenthal-van der Pütten et al. (2014) reports 

results of two-factorial repeated measures ANOVAs to test effects of “interaction dyad” 

(human vs robot) and “treatment behavior” (violent vs affectionate), with the positive and 

negative PANAS-subscale as separate dependent variables. The main effect of “treatment 

behavior” was significant for the Human-Robot Interaction (HRI) such that participants felt 

significantly more positive after the robot being treated affectionately by the human (in de 

video clip) than after the violent treatment in HRI, (F(1,13) = 24.462, p < .001; ηp²= .653). 

However, no such main effect was found for the Human-Human-Interaction (HHI), but rather 

a significant interaction effect of “treatment behavior” with “interaction dyad”, (F(1,13) = 

8.822, p = .011; ηp² = .404). While the authors conclude that these results indicate that 

participants felt most positive after the video showing friendly interactions with robots and 

least positive after the videos showing violent interactions with robots, the results might also 

be interpreted as follows: Violent treatment of either human or robot will cause less positive 

emotions than affectionate treatment of either. But, again, with NHST the only hypothesis 

tested is whether either H0 is rejected or H0 could not be rejected, hence limiting conclusions.  

A similar ANOVA was conducted with negative affect as dependent variable, resulting in 

participants reporting significantly more negative feelings after the violent treatment than 

after the friendly treatment of either robot or human, (HHI: F(1,13) = 5.985, p = .029; ηp² = 

.315; HRI: F(1,13) = 73.688, p < .001; ηp² = .850) (i.e., supporting the original authors’ 

hypothesis H1a). No main effect for “interaction dyad” (human vs robot) and no interaction 

effect occurred.  
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To test H2, the authors conducted two separate one-way repeated measures ANOVA’s 

with “interaction dyad” as independent variable and either one of the dependent variables 

empathy, attribution of feelings, and negative evaluation of the video clip. No main effects 

were found on empathy or the attribution of feelings, but a significant effect of “interaction 

dyad” on negative evaluation of the video clip was found. The human-human interaction was 

evaluated more negatively than the human-robot interaction, (F(1,13) = 14.304; p = .002; ηp² 

= .524; details in Rosenthal-van der Pütten, 2014). These results seem to indicate that human-

human interactions elicit stronger emotions – in the form of a more negative evaluation of the 

video clip – from participants than human-robot interactions. But, again, with NHST 

conclusions are limited to either H0 is rejected or H0 could not be rejected. 

Bayesian model selection using Bayes Factors. In our Bayesian re-analyses using 

Bayes Factors, we first tested the hypotheses as stated in the introduction (i.e., focused at 

directly testing the hypotheses as stated by the authors), then followed by our analyses to 

directly test the null hypotheses of interest.  

Testing each of the sub-hypotheses separately through BIEMS, Bayes Factors showed 

that there is some direct support for H1 (a, b, c, and d). Participants felt more negative 

emotions after viewing violent treatment of either human or robot, than after affectionate 

treatment (BF = 3.97). Participants also felt less positive emotions after viewing violent 

treatment of either human or robot, than after affectionate treatment (BF = 3.50). Bayes 

Factors showed less direct support for the second hypothesis. A Bayes Factor of 1.85 shows 

that there is some support for the hypothesis that human-human-interaction received stronger 

negative evaluations than human-robot-interaction when treated violently (however, note that 

a different variable has been used here; not the PANAS as in H1). With regard to empathy, a 

Bayes Factor of 1.89 shows that there is some support for the hypothesis that participants felt 
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more empathy watching human-human interaction than robot-interaction. The model testing 

attribution of feelings has a BF of approximately 1.00. 

As argued in the above, contemporary theorizing regarding affective responsiveness 

toward virtual others (i.e., mediated communication like robots) gives ground to expect that 

participants would report similar levels of positive and negative feelings toward both HHI 

(human) and HRI (robot), both when treated affectionately or violently. Therefore, we tested 

this H0-assumption through Bayes.  

The models testing the H0-assumption for the violent interactions all have Bayes 

Factors ≥ 1.5, indicating there is a little more direct support for the null hypotheses than for 

the alternative ones. In other words, the assumption that participants report similar levels of 

positive and negative feelings in response to both humans (HHI) and robots (HRI) (in the 

affectionate condition), receives some support but not very convincingly. The BF values are 

rather low. 

Furthermore, the models testing the H0-assumption for the affectionate interactions all 

have Bayes Factors ≤ 0.3, indicating there is more support for the alternative hypotheses than 

the null hypothesis. In other words, the assumption that participants report similar levels of 

positive and negative feeling in response to both humans (HHI) and robots (HRI), when 

being treated affectionately, is not supported by the data.  

To further explore what we found in the data, we tested whether participants 

experienced more positive or negative feelings in response to humans or robots. With regard 

to negative emotions, the model testing the hypothesis that participants experienced more 

negative emotions in response to humans being treated affectionately than in response to 

robots being treated affectionately was somewhat supported by the data (BF = 2.01). Looking 

at positive emotions, the model testing the hypothesis that participants experienced more 
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positive emotions in response to humans being treated affectionately than in response to 

robots being treated affectionately was also somewhat supported by the data (BF = 1.95). 

For hypothesis 2, we also tested the null hypothesis directly for each of the sub-hypotheses 

(H2a-c separately). We found no support for all three sub-hypotheses. In each case, the BF was 

< 1.00. Thus, Bayes factors for each sub-hypothesis stating the null were smaller than for the 

original hypotheses predicting stronger reactions in response to the human than toward the 

robot. 

Discussion Study 2 

While the authors presented arguments for both hypotheses of differences between 

group means as well as null hypotheses, they opted for the first. However, they did not find 

support for rejecting the null hypotheses through the traditional frequentist statistics, which 

they used to test the hypotheses, and thus concluded that similar responses were found toward 

humans and robots. With our Bayesian approach, we could clearly add to these 

interpretations by providing results of testing both types of hypotheses against each other. It 

turned out that testing each of the sub-hypotheses separately through Bayes Factors, provided 

sometimes a little more support for the original hypotheses of differences in response toward 

humans and robots and in some cases some direct support for the null hypotheses of no 

difference. However, the results of BF-models directly testing the null effects on negative 

evaluation of violent interactions, empathy and attribution of feelings, indicated that no 

hypothesis was supported by the data. In all, although direct testing of the null hypotheses 

was possible through a Bayesian approach, the BF values are quite low and thus cannot count 

as convincing evidence.  

An argument might be the rather small sample size which limits the power of 

probability testing. Important to note in this respect is that Bayes is less sensitive to sample 
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size and actually provides more accurate estimates with small sample sizes as well (Lee & 

Song, 2004; also see section “Sensitivity analysis” below).  

When testing hypotheses related to users responding socially and emotionally to a 

robot (or computer) in quite the same way as they do to real humans, research needs to obtain 

support in the data for H0. Likewise, virtual reality and augmented reality applications 

currently raise similar null hypotheses of interest. In other words, testing support in favor of 

H0, rather than its rejection, is then the central theoretical quest which can be much better 

addressed with Bayesian statistics than with traditional frequentist statistical testing as 

illustrated in the above example. 

Study 3: Visuospatial Abilities Across Genders 

We are very grateful to Chris Ferguson for generously providing the data underlying 

his paper titled Gender, video game playing habits and visual memory tasks (2008). This 

paper provides an interesting case for our argument because the theoretical introduction 

seems to argue toward a H0, but then results in a H1. That is, the author debates results found 

thus far that men and women would innately differ in visuospatial abilities. In contrast, the 

author argues that differences in visual memory can be better explained by object familiarity 

(i.e., learning history). The paper further examines the role of prior training for visuospatial 

tasks through video gameplay. In concluding the introduction, the hypotheses assume 

domain-specific gender differences in visuospatial abilities (H1) and (male) gaming 

experience as explaining these differences (H2). Given the ambiguous status of the theoretical 

arguments, testing H0 against alternative hypotheses is a challenge for a Bayesian approach 

because each can be addressed in direct competition.  

To test the hypotheses, 72 college students completed the Rey complex figure test 

(Meyers & Meyers, 1995) to assess visual memory and perceptual organization (by drawing a 

complicated, abstract figure from memory). In addition, to measure visual recall, they were 
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asked to draw six objects, selected from pilot testing them as either male objects (revolver 

and video game controller), female (brassier and make-up compact), or neutral objects 

(bicycle and eyeglasses). Total drawing ability is assessed as a composite score of the Rey 

test and drawing score for the six exemplars. Furthermore, measurements for video game 

playing habits in general as well as for playing violent video games were based on Anderson 

and Dill (2000).   

Results NHST vs. Bayes Factors 

Original results. Before presenting the results of our re-analyses, we present the 

original results from the paper. Results of a MANOVA analysis indicated a significant main 

effect for gender on the Rey complex figure test, using Wilk’s Lambda, F(4, 67)=10.38, p < 

.001; d= .80). However, subsequent univariate analyses showed that males and females did 

not differ on the Rey test, F(1,70)= .00, p=.99; d<.001) with similar means for males 

(M=47.24; SD=13.32) and females (M=47.24; SD=11.49). Hence, this asked for a direct test 

of H0, which we can do through Bayes below.  

Support for hypothesis H1 stating that visual memory is domain specific, was gained 

through the univariate analyses showing greater visual memory recall among males for 

“masculine” items, F(1,70)=14.63, p<.001; d=.93; for “neutral” items, F(1, 70)= 4.50, p = 

.037; d=.52), while females demonstrated greater visual memory recall for “feminine” items, 

F(1,70)= 4.41, p= .039 d=.49). 

The second hypothesis was tested including control for gender differences, through 

two stepwise regressions. The results of the first regression, with general video game playing 

habits and gender entered as predictors of visual memory (total score for drawing tasks), were 

statistically significant, F(1,70)=8.51, p ≤ .01, indicating a positive predictive relationship, 

R=.33, R2=.11. However, standardized coefficients (β or beta-weight) indicated that only 
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video game exposure (β=.33; partial r= .33) was a significant predictor of visual memory, not 

gender. 

Results model selection using Bayes Factors. Testing each sub-hypothesis of the 

authors’ hypothesis 1 through Bayes, we found similar results as the original study. However, 

Bayesian results added some direct support for the hypothesis stating no gender differences 

on the Rey task (BF = 3.09), and also added some direct support for males outperforming 

females for both the male and neutral exemplars (BFs are 2.01 and 1.94, respectively), while 

the females outperformed males for the female exemplars (BF = 1.95). Overall, however, the 

Bayes Factors are not very high and thus support for the theoretical assumptions is limited.  

To test each sub-hypothesis of the authors’ hypothesis 2 through Bayes, we used several 

multiple regression analyses with the following inequality constraints: the effect of either 

general gaming experience, or experience with violent games > 0, and the effect of gender = 

0. With regard to general gaming experience, the Bayes Factor was 11.42 indicating direct 

and clear support in favor of the hypothesis. With regard to violent gaming experience, the 

Bayes Factor was even 13.11, also indicating clear support in favor of the hypothesis (i.e., 

that gaming experience makes a difference but not gender). These two results show the added 

value of Bayes; we can now not only conclude that we were unable to reject the hypothesis 

that gender is not a predictor of visual memory after controlling for (violent) gaming 

experience, but we can also conclude that there is clear and direct support in favor of the null 

hypothesis that gender plays no role in visuospatial ability after controlling for (violent) 

gaming experience. 

Discussion Study 3 

The original paper argued that the differences between males and females in 

visuospatial abilities as found thus far could be the results of object familiarity through a 

specific learning history. While the authors formulated hypotheses of differences in gender-
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specific domains, we reasoned that a null hypothesis could likewise have been formulated. 

With our Bayesian approach we could address each in direct competition. Where the authors 

did not find significant differences between males and females for the Rey test of visuospatial 

ability, testing H0 through Bayes provided direct support that genders did not differ on the 

Rey test. In addition, in accordance with the original frequentist testing of H1, Bayes Factors 

supported the domain-specific gender differences in visual memory recall. Yet, the BF-values 

for H1 were not very strong.  

In a second hypothesis, the role of ‘prior training’ through habitual video gameplay 

was tested and Bayes factors supported and complemented the original findings. The 

Bayesian analysis provided clear and direct support in favor of the null hypothesis that males 

and females do not differ in visuospatial ability when prior training through (violent) video 

gameplay (holding primarily for males) was controlled for. While the authors of the original 

paper could only test the alternative hypotheses, our Bayesian approach provided an 

important extra. In fact, the BF-values obtained for our H2 reformulated as a null hypothesis 

were quite stronger than any of the aforementioned BF-values in our sample studies. While 

an absolute interpretation of BF-values or setting cut-off values is not desirable (see section 

“BF-hacking” below), low BFs should be interpreted with caution (see section “Sensitivity 

Analysis”). 

In sum, the re-analysis of this study through Bayesian statistics adds to the original 

results in further specifying and finding direct support for the lack of gender differences in 

visuospatial abilities after controlling for ‘training’ through (violent) video gameplay.  

BF-Hacking 

An important question remains unanswered, which is how to interpret the obtained 

BFs in the studies above? While they do provide nuanced insights in weighing the various 

test results against each other, when BF values are relatively low, it may be unclear to what 
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degree they can be used to ‘accept’ H0. Stated differently, when is the BF high enough in 

favor of H0 to conclude that H0 is supported by the data? To assist researchers with 

interpreting BFs, several scholars have proposed to apply cut-off values. However, Bayes 

Factors are not immune to a phenomenon similar to p-hacking, in which researcher degrees 

of freedom can be used to promote Bayes Factors which are theory supportive, which we call 

BF-hacking (cf. Simonsohn, 2014).  

Questionable research practices (QRPs), typically designed to convert undesirable null 

results to theory supportive statistically significant results, are now known to be common 

(e.g., Fang, Steen, & Casadevall, 2012; John, Loewenstein, & Prelec, 2012). To the extent 

that BFs remain dependent upon group mean differences and sample size dependent standard 

error calculations, QRPs that influence traditional NHST will also influence BFs. These 

would include convenient exclusion/inclusion of outliers, dropping DVs or unfavorable trials 

from analyses or reporting, methodological flexibility in the extraction of data, among others 

(see Wagenmakers et al., 2014). In this sense, Bayesian analyses can be thought of as an 

improvement for the p-hacking issue, but it is not immune to the application of QRPs. 

To evaluate whether the BFs as reported in the studies above can be considered substantial, 

cut-off values for minimum BF-values are proposed by Jeffreys (1961), and Kass and Raftery 

(1995). They argue that BFs between 1-3 are considered “Not worth more than a bare 

mention” (Kass & Raftery, 1995, p. 777), while only values beyond 3 can count as some 

support, with values starting at 10 being “substantial” (Jeffreys) or beyond 20 or “positive” 

(Kass & Raftery). Only BFs >100 (Jeffreys) or 150 (Kass & Raftery) are considered 

“decisive”. More recently, in the software JASP (Love et al., 2015), one asterisk is used when 

the BF >10, two asterisks are used when the BF >30 and three asterisks are used when the BF 

>100. This is probably implemented to help users of the software to interpret the results, but 
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these values are probably not meant by Love and colleagues as strict cut-off values, like p < 

.05 is nowadays often (mis)used.  

We argue strongly against using unjustified cut-off values as decision rules within the 

Bayesian framework because this might result in similar ‘hacking-behavior’ as with p-values. 

That is, a BF of 3.01 should not be considered ‘substantial’ in comparison to a BF of 2.99, 

which would then be “not worth more than a bare mention” (cf. Kass & Raftery). Put 

differently, using the famous quote of Rosnow and Rosenthal: “[…] surely, God loves the .06 

nearly as much as the .05” (Rosnow & Rosenthal, 1989, p. 1277), warning us that the p-value 

should not be used as a dichotomous decision tool, but as a probability measure. We argue 

that the same holds for the BF (i.e., God would love a Bayes Factor of 3.01 nearly as much as 

a BF of 2.99). Therefore, we feel that arbitrarily applying cut-off values, as a clear 

underpinning is lacking in our view, might result in similar misuse of BFs as with p-values.  

To provide more insight in how BF-values might vary given a particular dataset, we 

conducted some simulation analyses on the data provided.  

Sensitivity Analysis 

To get a sense of how to interpret the BF values as found in the re-analyzed studies 

reported in the above, we conducted some simulation studies that we called ‘sensitivity 

analyses’ to illustrate what changes would occur in the BF value when sample size would 

vary. That is, we conducted post-hoc analyses to scrutinize the sensitivity of BF if the 

obtained sample sizes would hypothetically increase/decrease (keeping all other factors the 

same).5  

                                                             
5 Note that we do not want to claim that BF values have frequentist properties or that small BF values can be 

justified with such a simulation study. Furthermore, the sensitivity analyses are conducted given the acquired 

data, the statistical model and tested hypothesis. Furthermore, in addition to scrutinize the sensitivity of BF for 

variations in sample size, we also varied the mean difference between the groups and the variance. Due to space 

limitations, the latter results are not reported, yet, they do not alter the picture as described here. These results 

can be requested by sending an email to the corresponding author.  
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For the simulation study we used the software BIEMS, where one can generate data 

sets with exactly the same descriptive statistics as are given in the input. Hence, we generated 

new datasets that are look-a-likes for each of the three original datasets and provide insightful 

results to the relative value of obtained BFs. For each, new datasets were generated through 

increasing/decreasing the sample size while keeping the other parameters similar as in the 

empirical data. For each newly generated dataset, BFs were computed. In so doing, 

answering the question how the obtained BFs can be interpreted becomes possible in a way 

that still respects the original dataset (i.e., by keeping the other parameters constant). The 

results of our analyses provide insights into what the BF could have been if, for example, the 

sample size of the original data would have been larger/smaller.  

In Figure 1, the results of the sensitivity analysis are shown for the moral distress 

study showing what BFs are obtained when the sample size is increased/decreased under the 

hypothesis that experienced gamers report the same amount of moral distress for both types 

of games. On the y-axis, the BFs are presented and on the x-axis the variations in sample size 

for the generated data sets (given the original variance and mean differences between the 

groups). The red dot indicates the BF as we found in the original dataset.   

The results show that the BF gets somewhat higher with increasing sample size, 

leveling out around 4.0 once the sample size per group is > 60. This shows that support for 

the hypothesis that experiencing the same amount of moral distress in both conditions would 

become a bit stronger as sample size increases, but it is still not very impressive. This 

highlights that for the specific data as received by the authors and the specified hypotheses, 

the BF could never have reached the cut-off values as suggested by several authors discussed 

in the previous section. The data would still have low evidential value. This might be inherent 

to particular types of studies that include more ‘noise’ than clean lab data with highly 
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simplified stimuli. Nevertheless, our analyses suggest that replication studies are needed that 

may further improve the study design, materials and measurements.    

 

Figure 1. Bayes Factors for the generated data sets of the ‘Moral Distress’ study where the 

sample size has been increased/decreased, but with fixed mean difference and variance.  

 

In Figure 2, the results are given for the newly generated datasets with varying sample 

sizes under the hypothesis that participants experience the same amount of either negative or 

positive feelings (i.e. left and right graphs, respectively) while watching humans or robots 

getting maltreated in the ‘robot study’. As can be seen in Figure 2, the BF gets lower when 

sample sizes increase. The BF becomes even lower than 1.0 when the sample size is > 140 

for negative feelings and when n > 45 for positive feelings. So, perhaps counter-intuitively, 

the collected data would show a decrease in support for the hypothesis of no differences 

among participants in both conditions if sample size would increase and group differences 

would remain equal.  
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Negative Feelings  

Positive Feelings 

Figure 2. Bayes Factors for the generated data sets of the ‘Robot Study’ where the sample 

size has been increased/decreased, but with fixed mean difference and variance.  

 

Figure 3 below shows the BFs for the newly generated datasets with varying sample 

sizes under the hypothesis that males and females have the same score on the Rey drawing 

task in the so called ‘Visual memory study’. As sample size increases, so does the BF, 

reaching a BF > 5.0 once the sample is > 220. This shows that direct support for the 

hypothesis of no differences between groups, that is, men and women have the same score on 

visual memory, becomes stronger as sample size increases and group differences remain 

constant. However, given the current data, it would require an unrealistic sample size to 

obtain so called ‘decisive’ BFs > 10.  

  

0

1

2

3

4

5

0 50 100 150 200

B
a

y
e
s 

F
a

c
to

r

Total N

0

1

2

3

4

5

0 50 100

B
a
y
e
s 

F
a
c
to

r

Total N

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180 200 220 240

B
a
y
e
s 

F
a
c
to

r

Total sample size



29 
 

Figure 3. Bayes Factors for the generated data sets of the ‘Visual Memory’ study where the 

sample size has been increased/decreased, but with fixed mean difference and variance.  

 

The simulation study demonstrated that the BFs as obtained in the original datasets 

are not likely to become much higher under different circumstances of the data. While 

Pericchi (2015) argues that Bayes factors (BF) may become more stringent as the sample size 

grows, the BF itself does not seem to become much higher as sample size grows. Note that 

this does not imply that the currently obtained low BFs should be attributed more weight than 

they have. However, it might mean that researchers in search of further evidence for the 

hypotheses proposed might not suffice in directly replicating the original experimental 

procedures and merely collecting a larger sample. This might lead to noisy samples where 

higher BF values are unlikely to be obtained. Instead, researchers might need to consider 

conducting conceptual replications under better controlled experimental conditions as to 

reduce noise.  

In sum, the simulations suggest that the given datasets might have never reached the 

cut-off values as discussed in the previous section, even if the authors would have had much 

larger datasets. Please note, this is not to say that the obtained BFs are sufficient, yet, that 

given the stimuli and experimental procedures at hand, not much better results may be 

expected if larger samples are collected. This implies that currently there is only weak and 

sometimes no support for the theories under investigation and better controlled replications 

are needed to find out if evidence slowly accumulates over time in favor of the tested theory, 

or that in due time the theory needs to be discarded.  

Even though the sensitivity analyses reflect somewhat critically on the strength of the 

data at hand, we argue that setting strict cut-off values for BFs is undesirable and would 

perhaps even result in publication bias (i.e., discarding studies with BFs below 10). While 
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small BF values should not be over-interpreted, they should at the same time not be ignored 

because they may play an equally important role in cumulative knowledge building as high 

BF values do. 

General Discussion 

The issue of publication bias in the context of null hypothesis significance testing 

(NHST) is, by now, well established across multiple research fields and multiple domains 

(Fanelli, 2010; Ferguson & Brannick, 2012; Nosek, Spies, & Motyl, 2012). NHST has 

already often been identified as problematic given the difficulty NHST has in offering 

support for null hypotheses (H0), with concomitant difficulty in publishing such papers. This 

state of affairs has resulted in common questionable research practices (QRPs, see John, 

Loewenstein, & Prelec, 2012) through which scholars, often acting in good faith, 

purposefully seek out publishable “statistically significant” results. This developing culture of 

significance chasing ultimately does little to advance science, as the population of published 

studies may not reflect the true state of affairs in a given science. Were it possible to directly 

find support in favor of null hypotheses (H0), this state of affairs might change. Under such a 

statistical system, null results could be worthwhile and potentially publishable. Indeed, 

“testing the null” would become an easier prospect. Likewise, in scientific fields related to 

media effects, statistical significance chasing under NHST may create researcher 

expectancies and cultural biases in which scholars may find what they are looking for. 

However, as we have illustrated in our examples in the current paper, it is just as viable to 

hypothesize that gameplay does not affect moral distress as much as it is to hypothesize that it 

does (i.e., for the inexperienced gamers). Also, the analyses in this paper indicated that 

interacting with robots may have similar outcomes as interacting with humans in some 

contexts but not in others, and gender may not make a difference for visuospatial abilities 

when taking one’s learning history into account. Clearly, today’s mediated environments and 
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new communication technology bring up many of such hypotheses (e.g., robots, social media, 

e-learning and e-therapy, augmented reality and virtual environments). If we are unable to 

test these ideas meaningfully, the entire scientific enterprise is difficult to interpret and may 

suffer from biases created by the ‘need’ to proving null hypotheses to be not ’true’. 

With this in mind, we sought to examine a Bayesian approach to hypothesis testing as 

a new avenue for media studies. Under a Bayesian approach it is possible to suggest and test 

multiple hypotheses directly and in comparison to each other, including the null hypothesis, 

and offer varying degrees of support for each. Such an approach offers more nuanced and 

meaningful results in regards to competing hypotheses and it may be possible to get a clearer 

picture of the degree to which given data support one hypothesis over the other. Across a 

research field, this may also help to prevent bias in meta-analyses to the extent such analyses 

rely spuriously on published, positive findings and an unbiased sample of null studies may be 

difficult to locate (Ferguson & Brannick, 2012). However, as said, we should keep in mind 

that not being able to reject the null hypothesis in commonly used frequentist statistics 

(NHST) does not imply that the H0 finds support in the data as is often erroneously inferred. 

To test a null hypothesis, or find support for a H0, a direct comparison of H0 versus 

meaningful alternative hypotheses through Bayesian statistics is necessary.  

In the current paper, we reanalyzed three studies with datasets provided by the 

original authors. All three papers appeared to contain null hypotheses, some more explicit, 

others hidden within interaction analyses. With a Bayesian approach we were able to specify 

all individual sub-hypotheses and test them in a meaningful way. In some cases, our results 

found clearer support for the authors’ original hypotheses than their use of NHST did, in 

other cases the evidence appeared weaker or not so clear. In most cases, the Bayesian 

reanalyses revealed rather low BF values which cannot be taken as convincing support and 

indicate that the originally obtained p-values overestimated the evidence against the null. We 
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have shown that a Bayesian approach (1) may lead to different conclusions than NHST, (2) 

provide appropriate ways to directly test (implicit) null-hypotheses, and (3) show that despite 

producing significant p-values, studies may have only small evidential value. 

Often, researchers are very creative in translating their specific expectations to fit with 

traditional NHST. Therefore, it is sometimes difficult to find a straightforward relationship 

between the expectations as posed in the introduction section and the (null) hypotheses that 

should also be tested. The results then do not provide a direct answer to the research question 

at hand and in the discussion section, reseachers are again very creative to translate their 

result of NHST back to the original research question. Researchers then go back to the 

descriptive statistics, such as means, to answer the research question instead of correctly 

interpreting the NHST results or, alternatively, test the H0 directly. This holds especially 

when the results are a bit counterintuitive or if many tests have been used (van de Schoot, 

Hoijtink, Mulder, Van Aken, Orobio de Castro, Meeus, & Romeijn, 2011).  Our opening 

quote of Killeen (2005, p.346) could not have been more appropriate. 

Through the Bayesian approach, such practices can be avoided as one has to specify 

each (sub)hypothesis in detail before looking at the data. Each hypothesis should reflect 

theory and can be based on inequality constraints reflecting statements like ‘higher’ or 

‘smaller’, but can also consist of a typical null hypothesis assuming no differences between 

groups. For the Bayesian approach, it does not really matter which hypothesis is tested as 

long as it reflects theory. The toolbox of Bayesian statistics is therefore much more flexible 

than the frequentist toolbox (for NHST), where the logic always is to test a hypothesis by 

rejecting the hypothesis of ‘nothing is going on’ (H0) and then conclude that ‘something is 

going on’ (but we don’t know what). Of course, within the frequentist toolbox various 

suggestions have been coined to test the null hypothesis, also in the area of communication 

studies (e.g., Levine, Weber, Hullett, Park, & Massi Lindsey, 2008; Levine, Weber, Park, & 
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Hullett, 2008) or to change the alternative hypothesis into an inequality constrained 

hypothesis using contrast testing (e.g., Rosenthal, Rosnow & Rubin, 2000) or using 

bootstrapped methods (e.g., Silvapulle & Sen, 2004; van de Schoot, Hoijtink & Dekovic, 

2010). However, these approaches are still limited by the focus on providing support for 

rejecting the H0 rather than finding direct support for any hypothesis. Moreover, none of 

these methods are as flexible and easy to interpret as the Bayesian methods.  

In the following, we will discuss some issues with a Bayesian approach that may be 

seen as problematic or limitations. Typically, Bayesian statistics do not have dichotomous 

benchmarks like BF > 3, or some even suggest BF > 10, to decide whether a study “worked” 

or not, and whether it is “publishable” or not. We believe setting a cut-off value would 

destroy the beauty of Bayesian testing and may lead to BF-hacking. The whole idea of 

providing various levels of direct support for various hypotheses that can then be compared 

directly in order to balance one’s interpretation of the results, is an important feature of 

Bayesian testing that we should be aware of. Of course, low BF values might indicate only 

weak support for the hypothesis under consideration and replication of the results is still 

needed (Asendorpf et al., 2013) to rule out other explanations, weak data or unconsidered 

hypotheses. Furthermore, in some fields it might be harder to obtain large BF values than in 

others, especially when more natural materials or circumstances are examined as compared to 

‘clean’ lab stimuli. To illustrate how the obtained BF-values would vary if certain model 

parameters would vary, we conducted so called sensitivity analyses to simulate what would 

happen if, for example, sample size would increase. It showed that the BF values could 

hardly get any larger in the given datasets. Therefore, the originally obtained p-values seemed 

to overestimate the evidence against the null and the results have low evidential value. 

Replication studies are needed to further test the theories at hand and to rule out other 

explanations. Furthermore, to improve the quality of the data, it might help to carefully 
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optimize the study design, materials and measurements. Other options for weak BF values are 

to combine several studies into a meta-analysis (e.g., Sutton and Abrams, 2001), or Bayesian 

updating where results of previous studies are updated with new data (e.g., van de Schoot et 

al., 2014). Science should be about accumulating evidence and one’s individual results can 

hardly be approached as a final definite conclusion.  

Moreover, the need of some to have a simple ‘yes/no’-rule should be countered by 

more nuanced theorizing in which various options may have some support and other options 

are still open. An important aspect in the Bayesian approach is that one has to specify the 

hypothesis to be tested very precisely and therefore, no ‘implicit’ or ‘hidden’ assumptions can 

sneak through. Perhaps, more importantly, is the balanced output in terms of a certain weight 

of support for one hypothesis over another, yet, each hypothesis can be contrasted to several 

hypotheses through direct tests AND each receives a certain weight of support that can 

directly be compared to each other. Therefore, the dichotomous forced choice is avoided.  

In line with our arguments in the previous section on possible BF-hacking, reviewers and 

journal editors should not take the magnitude of Bayes factors into account in their decision 

to accept papers. If they did, this could elicit publication bias in a similar way as the currently 

popular p < .05 benchmark. Then, scholars may resort to “BF-hacking”, which does not seem 

to be more challenging than p-hacking (see Simonsohn, 2014, showing this). Simonsohn 

concludes that “Going Bayesian may offer some benefits, providing a solution to selective 

reporting is not one of them”. We argue that by using Bayesian statistics, a researcher is 

required to be more open and transparent about the hypotheses tested and therefore the 

chances of BF-hacking are smaller than that of p-hacking. Yet, as a research community we 

should be cautious to not create new ways to introduce old publication bias.  
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