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Abstract

Muthen and Asparouhov (2012) propose to evaluate model fit in structural equation

models based on approximate (using small variance priors) instead of exact equality of

(combinations of) parameters to zero. This is an important development that adequately

addresses Cohen’s (1994) "The earth is round (p<.05)", which stresses that point

null-hypotheses are so precise that small and irrelevant differences from the null-hypothesis

may lead to their rejection. It is tempting to evaluate small variance priors using readily

available approaches like the posterior predictive p-value and the DIC. However, as will be

shown, both are not suited for the evaluation of models based on small variance priors. In

this paper a well behaving alternative, the prior-posterior predictive p-value, will be

introduced. It will be shown that it is consistent, the distributions under the null and

alternative hypotheses will be elaborated, and it will be applied to testing whether the

difference between two means and the size of a correlation are relevantly different from zero.

Keywords: DIC, Posterior Predictive P-value, Prior-Posterior Predictive P-value,

SEM, Small Variance Prior
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Testing Small Variance Priors Using Prior-Posterior Predictive P-values

Introduction

The title of Cohen’s 1994 paper “The Earth is Round: p < .05 ” stresses that small

and irrelevant deviations from a null-hypothesis may result in a rejection of the

null-hypothesis. Muthen and Asparouhov (2012) nicely address this problem by replacing

the “exactly equal to zero” constraints in structural equation models by approximate

equality constraints using, so-called, small variance priors. Their idea is very useful in the

context of, for example, confirmatory factor analysis, where such small variance priors

enable the replacement of cross-loadings that are fixed at zero (see Muthen and

Asparouhov, 2012) by cross loadings that are allowed wiggle room around zero. In the

context of the evaluation of measurement invariance they allow replacing strict by

approximate measurement invariance (see, e.g., Van de Schoot et al. 2013). The interested

reader is also refferred to Maccallum, Edwards, and Cai (2012) and Rindskopf (2012) for

further discussions of small variance priors.

The following simple regression model (which will be used to illustrate matters

throughout this paper) illustrates replacing an exactly equal to zero constraint by a small

variance prior. Let

yi = α + βxi + εi, (1)

where εi ∼ N (0, σ2) for i = 1, ..., N . The traditional null-hypothesis (a.k.a. the Earth is

exactly round) is

H0 : β = 0. (2)

Applying the proposal by Muthen and Asparouhov (2012) to the simple regression model

renders

H≈ : β ∼ N (0, τ 2), (3)

that is, Muthen and Asparouhov (2012) place a normal prior distribution on β that is

centered around zero and has a small variance τ 2 such that small deviations from zero are
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allowed (a.k.a. the Earth is approximately round). Like Muthen and Asparouhov (2012) in

some of their examples, in this paper τ 2 = .01 will be used. This implies that 95% of the

prior probability mass for β is between -.2 and +.2. In the simple regression model small

variance priors enable testing the null-hypothesis “the deviation of β from zero is

irrelevant” versus the alternative “the deviation of β from zero is relevant”. Note that we

will use standard non-informative prior distributions for the other parameters in the model:

α ∼ N (0, 1000000) and σ2 ∼ Γ−1(−1, 0). The three prior distributions will be denoted by

h(β), h(α), and h(σ2), respectively.

It is as to yet an unresolved issue how to test hypotheses based on small variance

priors (like H≈ from Equation 3). One approach is to compute the posterior predictive

p-value (Meng, 1994) which will be elaborated in the next section. Another approach is

based on model comparison by means of the deviance information criterion (DIC,

Spiegelhalter, Best, Carlin and Van Der Linde, 2002) which will also be elaborated in the

next section. Bayesian software provides the posterior predictive p-value and/or the DIC

by default: Mplus (Muthen and Muthen, 1998-2015), Blavaan (Merkle and Rosseel, 2015),

and AMOS (http://www.spss.com.hk/amos/), render the posterior predictive p-value and

DIC; WinBugs/OpenBugs (Lunn, Thomas, Best, and Spiegelhalter, 2000), and JAGS

(http://mcmc-jags.sourceforge.net/), render the DIC. It is therefore tempting to also use

these tools to test hypotheses based on small variance priors. Indeed, in a large systematic

review on the use of Bayes statistics in Psychological research by Van de Schoot et al.

(2016) three empirical papers were identified that tested small variance priors for

cross-loadings (Falkenstrom, Hatcher, and Holmqvist, 2015; Golay, et al. 2013; Ryoo et al.

2015) and five papers that used small variance priors to test measurement invariance

(Bujacz et al., 2014; Chiorri et al., 2014; Cieciuch et al., 2014; Jackson et al., 2014; Zercher

et al., 2015). The posterior predictive p-value and the DIC were also used in simulation

studies (Kelcey et al., 2014; Muthen and Asparouhov, 2012; Strohmeyer et al., 2015; Van

de Schoot et al., 2013). The interested reader is also referred to Appendix A of Asparohov,



TESTING SMALL VARIANCE PRIORS 6

Muthen and Morin (2015). They give a step by step description of the evaluation of models

based on small variance priors in which there is no role for the posterior predictive p-value

or the DIC.

In the current paper it will be shown that the posterior predictive p-value and the

DIC can not be used to evaluate small variance priors. An alternative will be proposed, the

prior-posterior predictive p-value, which will shown to be well suited for the evaluation of

models based on small variance priors. To illustrate the approach proposed, small variance

priors for a correlation and the difference between two means will be tested. This paper

will be concluded with a discussion of the main results and their importance for the

evaluation of small variance priors in the context of full fledged structural equation models.

Evaluating Small Variance Priors Using the Posterior Predictive P-value and

the DIC

The Posterior Predictive P-value and the DIC

In this paper the posterior predictive p-value Meng (1994) presented in Muthen and

Asparouhov (2012) and implemented in Mplus (Muthen and Muthen, 1998-2015) will be

used. It is based on a discrepancy measure (the likelihood ratio statistic) comparing H≈

with Hu (the saturated model). Let θ = [α, β, σ2], that is, θ contains the parameters from

the regression model presented in Equation 1, then:

p≈ = P (Drep > D|y,x, H≈) =
∫
θ
P (Drep > D|θ)g(θ|y,x, H≈)dθ, (4)

where, g(.) denotes the posterior distribution of θ based on the small variance prior from

Equation 3:

g(.) ∝ f(y | x, θ)h(β)h(α)h(σ2) = −N − 1
2 (log |Σ(θ)|+ tr[SΣ−1(θ)])h(β)h(α)h(σ2). (5)

Note that, the discrepancy measure

Drep = log |Σ(θ)| − log |Srep|+ tr[SrepΣ−1(θ)]− k, (6)
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and

D = log |Σ(θ)| − log |S|+ tr[SΣ−1(θ)]− k, (7)

with k = 2 denoting the number of observed variables. The unbiased sample covariance

matrix S contains the variances and covariance of y and x

S =

 s2
y syx

syx s2
x

 , (8)

the unbiased sample covariance matrix Srep contains the variances and covariance of yrep

and x

Srep =

 s2
yrep

syrepx

syrepx s2
x

 , (9)

where yrep is generated using the simple regression model, θ, and x, and the covariance

matrix implied by θ

Σ(θ) =

β2s2
x + σ2 βs2

x

βs2
x s2

x

 . (10)

Besides the posterior predictive p-value we will use the DIC (Spiegelhalter, Best, Carlin

and Van Der Linde, 2002) as presented by Asparouhov, Muthen, and Morin (2015) and

implemented in Mplus (Muthen and Muthen, 1998-2015):

DIC≈ = C̄≈ + q≈, (11)

where,

C̄≈ =
∫
θ
−2 log f(y | x, θ)g(θ | y,x, H≈)dθ, (12)

the estimated number of parameters

q≈ = C̄≈ − 2 log f(y | x, θ̂), (13)

and, θ̂ denotes the mean of the posterior distribution g(.).

Note that, the notation p≈ and DIC≈ is used to stress that the posterior predictive

p-value and DIC are computed using a posterior distribution g(.) that is based on small



TESTING SMALL VARIANCE PRIORS 8

variance prior. It is furthermore important to note that, the influence of the small variance

prior can only enter the computation of the posterior predictive p-value and the DIC

through this posterior distribution. This has consequences that will be illustrated in the

next two subsections.

Performance of p≈ and DIC≈ for the Evaluation of the Small Variance Prior

Used in the Simple Regression Model

To illustrate that p≈ from Equation 4 and DIC≈ from Equation 11 provide poor

evaluations of the fit of H≈, four data sets where generated with sample sizes N of 25, 100,

1000, and 10000, respectively, such that the maximum likelihood estimates α̂ = 0,

β̂ = .707, σ̂2 = .50, and the sample mean and variance of x are 0 and 1, respectively (data

generated using BIEMS, Mulder, Hoijtink, and de Leeuw, 2012). Clearly, the estimate of

β̂ = .707 is not in agreement with H≈ and a substantial amount of the variance of y (50%)

is explained by x. Consequently, with increasing sample sizes the evidence against H≈

should become stronger, that is, p≈ should become smaller. However, as can be seen in the

third column of Table 1 (computed using Mplus version 7.4, Muthen and Muthen,

1998-2015, with fbiterations=100000) the posterior predictive p-value does not decrease

but actually the opposite happens! This is caused by the fact that with increasing sample

sizes the data dominate the prior, stated otherwise, with increasing sample sizes the

influence of the prior on the posterior g(.) disappears.

In the second column of Table 1 the p≈’s are displayed that result if the prior

distribution β ∼ N (0, .01) is replaced by the uninformative prior β ∼ N (0, 1000000), that

is, irrespective of the value of N , there is no prior influence on the posterior distribution.

What is tested here is the fit to the data of the simple regression model. Since the data

were generated using the simple regression model, it is not a surprise that the fit is good

(i.e., the p≈’s are close to .50). As can be seen comparing the second and third columns,

with increasing N both posterior predictive p-values converge towards each other. This
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implies that with increasing N both posterior predictive p-values test the fit of the simple

regression model and nothing else.

In the last four columns of Table 1, DIC≈ and q≈ are presented for τ 2 = 1000000 and

τ 2 = .01, respectively. Since the data are not in agreement with τ 2 = .01, with increasing

sample size the difference between both DIC’s should increase (the data generated are not

conflicting with β ∼ N (0, 1000000) but are conflicting with β ∼ N (0, .01)). However, as

can be seen, the opposite happens. This too is caused by the fact that with increasing N

the data increasingly dominate the prior and therefore that the influence of the prior on

the posterior distribution and therefore on the outcome of the model evaluation vanishes.

This is further illustrated comparing the estimated number of parameters q≈. For smaller

sample sizes the small variance prior imposes restrictions on the parameter space and

therefore the estimated number of parameters for τ 2 = .01 is smaller than for

τ 2 = 1000000. However, with increasing sample size the influence of the prior vanishes and

the estimated number of parameters converges to 3, which is number of parameters used to

specify the regression model in Equation 1.

These observations do not depend on the fact that x is not modeled in Equation 1. If

the model is extended with with xi ∼ N (µ, σ2
µ) for i = 1, ..., N , h(µ) ∼ N (0, 1000000), and

h(σ2
µ) ∼ Γ−1(−1, 0), Mplus renders the results displayed in Table 2. As can be seen, the

conclusions are identical to the conclusions obtained from Table 1.

Finally, Table 3 is the counterpart of Table 1 in which data are generated such that

β̂ = 0 and σ̂2 = 1 and all other features are identical. Since H≈ is true the posterior

predictive p-value should increases with N . Furthermore, since the data generated are

more in agreement with β ∼ N (0, .01) than with β ∼ N (0, 1000000), the difference

between both DIC’s should increases with N . As can be seen, what should happen does

not happen. Again this is caused by the fact that for increasing N the influence of the

small variance prior on the posterior distribution disappears.

The phenomenon that the data dominate the prior is not restricted to the simple
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regression model. This implies that more elaborate structural equation models with

corresponding generalization of H≈ can also not be evaluated using p≈ or DIC≈. What will

result for increasing N is an evaluation of the fit of the model at hand as if uninformative

instead of informative priors were used for the target parameters. In the next section this

will be illustrated using a factor model with cross-loadings.

Performance of p≈ and DIC≈ for the Evaluation of Small Variance Priors for

Cross Loadings

In this section two situations will be discussed: the evaluation of small variance priors

for cross loadings in a two factor model that is identified, and the evaluation in a two

factor model that is over identified. Using BIEMS data were generated such that in a two

factor model with p = 1, ..., 6 indicators z1, ..., z6 the maximum likelihood estimates of the

loadings are λ̂11 = 7, λ̂ = .7, λ̂13 = .7, λ̂14 = −.4, λ̂15 = 0, λ̂16 = .4 for the first factor f1 and

λ̂21 = −.4, λ̂22 = 0, λ̂23 = .4, λ̂24 = .7, λ̂25 = .7, λ̂26 = .7 for the second factor f2. The sample

correlation between both factors equals 0, and the sample mean and variance are 0 and 1,

respectively, for both factors. Finally, the residual variances of each indicator are

τ̂1 = .35, τ̂2 = .51, τ̂3 = .35, τ̂4 = .35, τ̂5 = .51, τ̂6 = .35 , that is, each indicator has a sample

mean of 0 and sample variance of 1.

The following factor model was used to analyze these data for sample sizes of 50, 100,

500, 1000, and 5000, respectively:

zpi = λ1pf1i + λ2pf2i + εp with εp ∼ N (0.τp) for i = 1, ..., N, (14)

and f1i

f2i

 = N


0

0

 ,
1 ρ

ρ 1


 , for i = 1, ..., N. (15)

As can be seen, the model is not identified because in addition to fixing both factor

variances to 1 two more constraints are needed. A standard manner to achieve this is by

fixing one cross-loading to 0 for each factor. Muthen and Asparouhov (2012) identify the
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model using small variance priors for the cross-loadings (the smaller loadings in our

example), that is, λ14, λ15, λ16, λ21, λ22, λ23. We will use two variations of their approach:

the first renders a factor model that is indentified (I),

H≈.I : h(λfp) ∼ N (0, .01) for fp = 15, 22; (16)

the second renders a factor model that is over-identified (IO),

H≈.OI : h(λfp) ∼ N (0, .01) for fp = 14, 15, 16, 21, 22, 23. (17)

Standard uninformative priors are used for the other model parameters.

It is important to note, that it is not possible to test the small variance priors used to

identify the model. When the model is identified by fixing one loading for each factor at a

specific value, the fit of the model is unaffected by the value chosen, because the data do

not contain information about this value. The same holds for identification by means of a

small variance prior for one loading of each factor. As can be seen in the second column of

Table 4 (obtained using Mplus using fbiterations=100000), independent of the sample, size

p≈,I indicates that the fit of the model to the data is good. This is as it should be, because

the data are generated to perfectly fit the model used. However, if additional small

variance priors are specified as in the over-identified model, the data can be used to test

the appropriateness of these priors. As can be seen above, for fp = 14, 16, 21, 23, λ̂fp is

rather different from the mean of the corresponding small variance prior. Therefore, with

increasing sample sizes, the evidence against H≈.OI should increase. As can be seen in Table

4, this does not happen: p≈,OI increases with increasing sample sizes and the differences

between DIC≈,I and DIC≈,OI also decrease instead of increasing in favor of DIC≈,I .

The main conclusion obtained from the results presented in this and the previous

section is that the posterior predictive p-value and the DIC can not be used for the

evaluation of small variance priors because their behavior is inconsistent. One of the

reviewers wondered whether modifications are feasible such that the posterior predictive

p-value and the DIC can be used for the evaluation of small variance priors. The
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suggestion to reduce the size of the prior variance with increasing sample size might work if

a clear cut procedure how to achieve this can be developed. However, we do not endorse

this because we want to choose the prior variance such that on account of substantive

reasons and irrespective of the sample size it represents what constitute relevant and

irrelevant differences from zero. The suggestion to replace the standard DIC based on

samples from the posterior distribution by a “prior” DIC based on samples from the prior

distribution was explored by Van de Schoot et al. (2011). They did not address

small-variance priors but other types of informative priors and showed that a prior DIC is

also not suited for the evaluation of informative prior distributions. In the next section the

prior-posterior predictive p-value will be introduced. It will be shown that this p-value is

suited for the evaluation of small variance priors.

Evaluating Small Variance Priors Using The Prior-Posterior Predictive P-value

The Prior-Posterior Predictive P-value

To evaluate the fit of H0 : β = 0 in the context of the simple regression model, the

following posterior predictive p-value is used (Scheines, Hoijtink, and Boomsma, 1999):

p0 = P (Drep > D|y,x, β = 0) =

∫
α,σ2

P (Drep > D|α, σ2, β = 0)g(α, σ2|y,x, β = 0)dα, σ2. (18)

To test H≈ : β ∼ N (0, τ 2), p0 from Equation 18 can be modified into the prior-posterior

predictive p-value

ppripos = P (Drep > D|y,x, h(β))

∫
β

∫
α,σ2

P (Drep > D|α, σ2, β)h(β)g(α, σ2|y,x, h(β))dα, σ2dβ, (19)

where

g(α, σ2|y,x, h(β)) =
∫
β
g(α, σ2|y,x, β)h(β)dβ, (20)
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yrep is simulated using θ = [α, σ2, β], and Drep and D are based on

Σrep(θ) =

s2
yrep

0

0 s2
x

 , (21)

and

Σ(θ) =

s2
y 0

0 s2
x

 , (22)

respectively, that is, independent of θ which makes Drep and D test statistics instead of

discrepancy measures. Note that, for increasing N the prior-posterior predictive p-value

from Equation 19 does not behave as if an uninformative prior distribution for β was

specified because the effect of h(β) on the computation of ppripos is direct and not mediated

through the posterior distribution as was the case for the posterior predictive p-value.

Performance, Null-Distribution and Power of ppripos

In this section three aspects of the performance of ppripos will be illustrated. First of

all, it will be shown that it does not suffer from the same drawbacks as the posterior

predictive p-value and the DIC. Secondly, it will be shown that the null-distribution of

ppripos is approximately uniform. Thirdly, it will be shown using small variance priors for

the difference between two means and a correlation, that larger sample sizes are needed to

obtain a power of .80 than when the corresponding classical null-hypotheses are tested

using a classical p-value.

In Appendix A, the algorithm used to compute ppripos is elaborated. This algorithm is

used to illustrate the performance of ppripos in Table 5. Data are generated using BIEMS

such that the sample mean and variance of x are 0 and 1, respectively, α̂ = 0, for various

values of β̂ and σ̂2 chosen such that the variance of y equals 1. The results in Table 5

highlight four features of ppripos:

1. When β̂ = 0, ppripos = 1, independent of the sample size. This is analogous to the

classical p-value corresponding to H0 : β = 0 when β̂ = 0, that is, if the sample

estimate is identical to the null-value, the resulting p-value equals 1.
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2. When β̂ increases while keeping the variance of y fixed at 1 (implying the the

proportion of variance explained increases with β̂), ppripos decreases, that is, the

larger the evidence against H≈ the smaller ppripos. This is the desired behavior of the

p-value and can be observed for each sample size.

3. For β̂ > 0 the ppripos decreases with increasing N . This too is the desired behavior of

the p-value.

4. Comparing the one but last column of Table 5 with the third column of Table 1

(reproduced in the last column of Table 5) it can be observed for N = 25 and

N = 100 that ppripost is smaller than p≈ and thus is more powerful in rejecting H≈.

Based on the results in Table 5 it can be concluded that the basic behavior of ppripos

is adequate. What remains to be determined, are guidelines for the interpretation of the

size of ppripost. In Figure 1 a null distribution of ppripos is displayed. This null-distribution

was obtained after executing the following four steps 100000 times:

1. Sample xi from N (0, 1) for i = 1, ..., N ,

2. Sample β from N (0, .01) and set α = 0, σ2 = 1,

3. Simulate yi from N (α + βxi, σ
2) for i = 1, ..., N ,

4. Compute ppripos,

and present the 100000 resulting p-values in a histogram. As can be seen in Figure 1, the

deviations from uniformity (expected frequency of each bar equal to 5000) are rather small

and never more than 150. Furthermore, the probability that ppripos is smaller than .05 is

about .0512. It seems that it is reasonable to interpret ppripos as a classical p-value that is

uniform under the null, that is, compare ppripos to a type I error level of .05.

Cohen (1992) presents sample size calculations for testing H0 : µ1 = µ2 versus

H1 : µ1 6= µ2, where µ1 and µ2 denote the means in groups 1 and 2, respectively. As can be
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seen in the top panel of Table 6, if the type I error is controlled at .05, to achieve a power

of .80, the number of persons per group should be 393, 64, and 26 for small, medium and

large effects d = (µ1 − µ2)/σ, respectively. Using xi = 1 for i = 1, ..., .5N and xi = 0 for

i = .5N + 1, ..., N implies that β = µ1 − µ2 and α = µ2. Repeatedly sampling data from a

population in which µ1 = d, µ2 = 0 and σ = 1 allows the computation of the sample size

for testing H≈ : β ∼ N (0, .01) such that the power is about .80 if the type I error is

controlled at .05. As can be seen in Table 6, compared to testing the traditional

null-hypothesis larger sample sizes are needed to test small variance priors with the same

power. This is not surprising, because it is easier to reject a precise than a less precise

hypothesis. More specifically, it can be seen that unrealistically large sample sizes are

needed to detect an effect d = .2. This is not surprising, because d = .2 is rather realistic if

β ∼ N (0, .01). Furthermore, it can be seen that somewhat larger sample sizes are need to

detect d = .5, and that similar sample sizes are needed to detect d = .8.

When testing H≈, it is important that the prior variance of β is tailored to the scale

of the data. In the power analysis presented, the population parameters were chosen such

that β = d. Consequently, the prior variance of .01 implies that under H≈ values of β = d

between -.2 and +.2 are rather likely. Stated otherwise, an observed effect size has to be

larger than “small” to cast doubt on H≈. As will be elaborated in the next section, when

analyzing empirical data with the approach proposed in this paper, tailoring the prior

variance of β to the scale of the data at hand is an important step.

In the bottom panel of Table 6, Cohen’s (1992) sample sizes for testing H0 : ρ = 0 are

displayed. Repeatedly sampling data from a population in whichyi
xi

 = N


0

0

 ,
1 ρ

ρ 1


 , for i = 1, ..., N, (23)

implies that α = 0, β = ρ, and σ2 = 1− ρ2. With this setup a prior variance of .01 for β

implies that under H≈ values of β = d between -.2 and +.2 are rather likely. Stated

otherwise, observed correlations have to be approaching “medium” to cast doubt on H≈.
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As can be seen, the results obtained are analogous to the results obtained in the top panel

of Table 6. The main difference is that the sample size needed to detect a medium effect is

a about twice larger than the corresponding “classical” sample size. All in all, it can be

concluded that for effect sizes that are “unreasonable” under H≈ the sample sizes needed to

obtain a power of .80 are larger than the sample sizes needed in the classical setting. For

effect sizes that are “reasonable” under H≈ the sample sizes needed are unrealistically

large. These features are appropriate if the goal is to evaluate H≈ instead of a classical

null-hypothesis.

Examples

In this section two applications of small variance priors will be presented. The first

concerns testing whether the difference between two means is relevantly different from zero.

The second concerns testing whether a correlation is relevantly different from zero.

Testing Cohen’s d

Henderson, de Liver, and Gollwitzer (2008) present research with respect to the

relation between mind-set and attitude strength with respect to the statement that “a list

of sex offenders should be made public". Attitude strength is measured on a scale ranging

from -3 to +3. The higher the score, the smaller the attitude strength. Two of their

mind-set groups are: “one-sided", in which participants are primed to rely on their own

experiences which could be against or in favor of the statement; and “two-sided", in which

participants are primed that both perspectives are important. In Table 7 descriptives and

p-values obtained for the comparison of both group with respect to attitude strength are

presented.

Using Students’ t-test to evaluate H0 : µ1 = µ2 rendered a classical p-value of .021,

that is, using the conventional type I error equal to .05 implies that H0 has to be rejected.

An interesting question is whether the null-hypothesis can also be rejected if it specifies
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that the difference between both means is irrelevantly different from zero. This can be

investigated using the following three step procedure:

1. Specify the prior variance corresponding to an irrelevant difference. Note that the

relevance of a difference depends on σ2. Here a prior variance of τ = .01 is considered

to represent irrelevant differences if σ2 = 1.

2. Tailor the prior variance to the scale of the data at hand. Use σ̂ = 1.855 to compute

the rescaled prior variance τ = (.1× 1.855)2.

3. Use the same set-up as in the sample size calculation in the previous section and τ as

determined in the previous step to compute ppripos for H≈ : β ∼ N (0, .0344).

These three steps result in ppripos = .024 which is only marginally larger than the

corresponding classical p-value. This implies that the difference between means of attitude

strength in the one and two sided groups are not only different from zero, but also

relevantly different from zero.

Testing a Correlation

Dolan, Oort, Stoel, and Wicherts (2009) obtained data for the BIG5 personality

inventory from 500 students. These data are incorporated in the package JASP

(https://jasp-stats.org). Here the scores on the variables “openness” and “agreeableness”

will be used to test whether the correlation between both variables is irrelevantly different

from zero. Descriptives for both variables are presented in Table 8. As can be seen, the

classical p-value computed for H0 : ρ = 0 equals .00, that is, using the convential type I

error level of .05, it can be concluded that H0 has to be rejected. The following three steps

can be used to test whether the correlation is irrelevantly different from zero:

1. Specify the prior variance corresponding to an irrelevant difference. Note that the

relevance of a difference depends on the scale of y and x. Here a prior variance of
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τ = .01 is considered to represent irrelavant differences if both variables are

standardized because in that situation β = ρ.

2. Tailor the prior variance to the scale of the data at hand. Use s2
y = .342 and

s2
x = .352 to compute the rescaled prior variance τ = (.1× .34/.35)2.

3. Use the same set-up as in the sample size calculation in the previous section and τ as

determined in the previous step to compute ppripos for H≈ : β ∼ N (0, .0094).

These three steps result in ppripos = .58 which is larger than .05. It can therefore be

concluded that although ρ is different from zero, it is not relevantly different from zero.

Discussion

The title of Cohen’s (1994) paper “ The earth is round, p<.05” nicely stresses that

small and irrelevant differences from a null value may result in a rejection of the

corresponding null-hypothesis. This problem is addressed by Muthen and Asparouhov

(2012) who propose so-called small variance priors for the parameters of interest that

represent irrelevant differences from zero. This paper addressed testing the hypothesis that

parameters are irrelevantly different from zero. Using evaluations based on a simple

regression model four conclusions were obtained:

1. The posterior predictive p-value and the DIC are inconsistent. If H≈ is not true and

the sample size increases both express decreasing evidence against H≈. If H≈ is true

and the sample size increases both express increasing evidence against H≈.

2. The prior-posterior predictive p-value does show the desired behavior, both if the

hypothesis specifying irrelevant differences is false and true. It is more powerful than

the posterior predictive p-value and has a null-distribution that is approximately

uniform. It appears to be an excellent p-value for the evaluation of hypotheses

specifying small variance priors for the parameters of interest.
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3. Because the traditional null-hypothesis is more specific than the hypothesis specifying

irrelevant differences, evaluations of the latter are less powerful. Compared to the

traditional null-hypothesis larger sample sizes are needed to achieve the same power.

4. The prior-posterior predictive p-value can be used for the evaluation of hypotheses

specifying irrelevant differences from a null-value for the differences between two

means and correlations.

Although the evaluations of the prior-posterior predictive p-value presented in this

paper were limited to the context of a simple regression model, the main conclusions

generalize to structural equation models. There too the influence of the small variance

prior will not disappear with increasing sample sizes, because the prior-posterior predictive

p-value is based on data sets replicated using the prior distribution of the parameters of

interest and the posterior distribution (conditional on the aforementioned prior

distribution) of the remaining parameters. Of course, more elaborate evaluations of the

prior-posterior predictive p-value in the context of structural equation models are needed.

No doubt these will be made as soon as the authors of one or more of the software packages

referred to in this paper implement it, because testing whether a model approximately fits

the data is a much better idea than testing whether a model exactly fits the data.

It is important to note that evaluation of small variance priors using the

prior-posterior predictive p-value is one alternative for classical null-hypothesis significance

testing. The interested reader is referred to Morey and Rouder (2011) and Hoijtink (2012,

pp. 8-10) who replace the classical null hypothesis by an interval null hypothesis and

evaluate it by means of the Bayes factor (Kass and Raftery, 1995). The main difference

with the approach presented in this paper is that the dichotomous reject/do not reject

decision based on the comparison of the p-value with a pre-specified alpha level is replaced

by the relative support in the data for the hypotheses entertained as expressed by the

Bayes factor. Another alternative is to summarize the information, e.g. with respect to the

difference between two means, in a confidence or credible interval (Cumming, 2012) and to
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provide a qualitative interpretation. However, both approaches are currently essentially

limited to the evaluation of one quantity of interest (e.g., the difference between two

means) and further research is needed to explore if and how they can be applied in more

elaborate models like the factor model with cross-loadings.
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Appendix A: The Algorithm Used to Compute ppripos

To compute ppripos from Equation 19, first of all a five step Markov chain Monte

Carlo algorithms is used to sample from h(β)g(α, σ2|y,x, h(β)).

Note, that, g(α, σ2|y,x, h(β)) ≈ 1/T ∑T
t=1 g(α, σ2|y,x, βt), where βt for t = 1, ..., T is

sampled from h(β). Sampling α, σ2 from g(α, σ2|y,x, βt) for various values of βt renders a

sample from g(α, σ2|y,x, h(β)).

1. Set σ2
0 = 1, that is, in iteration t = 0 an initial value is assigned to σ2.

2. Execute Steps 3 through 5 for t=1,...,10000 iterations.

3. Sample βt from h(β). Set σ2
0,t−1 = σ2

t−1, that is, in iteration u = 0 an initial value is

assigned.

4. For u = 1, ..., U execute the following two steps, that is, a Gibbs sampler to sample

from g(α, σ2|y,x, βt):
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(a) Sample αu,t−1 from g(α|y,x, βt, σ2
u−1,t−1) = N (m, s2) where

m = ∑N
i=1(yi − βtxi)/N and s2 = σ2

u−1,t−1/N .

(b) Sample σ2
u,t−1 from g(σ2|y,x, βt, αu,t−1) = Γ−1(a, b) where a = N/2− 1 and

b = .5 ∑N
i=1(yi − αt−1 − βtxi)2.

5. Set αt = αU,t−1 and σ2
t = σ2

U,t−1.

Subsequently, Equation 19 is approximated by

ppripos ≈
10000∑
t=1

P (Drep,t > D|αt, σ2
t , βt), (24)

where yrep,t is generated using αt, σ2
t , βt and Drep,t is a function of yrep,t (cf. Equation 21).

With U = 1000 it is clear that in Step 4 g(α, σ2|y,x, βt) is sampled from because the

dependence on the initial value σ2
t−1 will disappear. However, the resulting sample can not

be distinguished from the one obtained using U = 1. This makes the sampler for

h(β)g(α, σ2|y,x, h(β)) as efficient as samplers that address g(β, α, σ2|y,x). Data with

N = 25 are generated using BIEMS such that α̂ = 0, β̂ = .3, σ̂2 = .91, and the sample

mean and variance of x are 0 and 1, respectively. As can be seen in Table 9, using the

algorithm described above to sample from h(β)g(α, σ2|y,x, h(β)) with U = 1 and

U = 1000 rendered distributions for β, α, and σ2, that are virtually identical.

For U = 1 the sampler is almost a traditional Gibbs sampler, except that β is sampled

from its prior instead of its posterior distribution. As has been shown, for the simple model

at hand a burn-in period is not needed to sample the nuisance parameters (α, σ2) from their

posterior distribution conditional on β. Although it is expected that the same holds for

models involving more than two nuisance parameters, users of the prior-posterior predictive

p-value are well-advised to explore whether a burn-in period is needed before choosing U .
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Table 1

Performance of p≈ and DIC≈ for H≈ is not True

N p≈ p≈ DIC≈ DIC≈ q≈ q≈

τ 2 = 1000000 τ 2 = .01 τ 2 = 1000000 τ 2 = .01 τ 2 = 1000000 τ 2 = .01

25 .46 .01 59.92 69.96 2.72 1.80

100 .50 .02 220.44 232.76 2.91 2.51

1000 .50 .31 2150.38 2152.59 2.97 2.92

10000 .49 .47 21450.39 21450.64 3.03 3.03
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Table 2

The Counterpart of Table 1 in which Equation 1 is Extended with xi ∼ N (µ, σ2
µ)

N p≈ p≈ DIC≈ DIC≈ q≈ q≈

τ 2 = 1000000 τ 2 = .01 τ 2 = 1000000 τ 2 = .01 τ 2 = 1000000 τ 2 = .01

25 .45 .02 134.92 144.81 4.46 3.46

100 .49 .03 508.43 520.47 4.90 4.41

1000 .50 .34 4992.24 4994.37 4.95 4.88

10000 .49 .48 49833.14 49833.34 5.01 4.99
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Table 3

Performance of p≈ and DIC≈ for H≈ is True

N p≈ p≈ DIC≈ DIC≈ q≈ q≈

τ 2 = 1000000 τ 2 = .01 τ 2 = 1000000 τ 2 = .01 τ 2 = 1000000 τ 2 = .01

25 .46 .59 77.26 75.45 2.72 1.94

100 .50 .56 289.79 288.75 2.91 2.40

1000 .50 .51 2843.83 2843.65 2.97 2.88

10000 .50 .50 28384.82 28384.80 3.03 3.02
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Table 4

Performance p≈ and DIC≈ in the Two Factor Model (I denotes identified, OI denotes over

identified)

N p≈,I p≈,OI DIC≈,I DIC≈,OI q≈,I q≈,OI

50 .54 .08 796.48 813.09 21.39 19.38

100 .61 .16 1542.77 1557.24 22.37 21.34

500 .65 .45 7522.53 7527.78 22.57 22.76

1000 .65 .55 14998.92 15002.12 22.47 22.94

5000 .66 .63 74810.46 74812.79 21.43 23.16
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Table 5

Performance of ppripos

N β̂/σ̂2 p≈

0/1 .1/.99 .2/.96 .3/.91 .707/.50 .707/.50

25 1 .66 .38 .17 .00 .01

50 1 .56 .24 .08 .00

100 1 .47 .15 .03 .00 .31
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Table 6

Sample Size Calculations for Type I Error Probability .05 and Power .80

small medium large

d .20 .50 .80

N per group for H0 : µ1 = µ2 393 64 26

N per group for H≈ : β ∼ N (0, .01) >20000 80 28

ρ .10 .30 .50

N for H0 : ρ = 0 783 85 28

N for H≈ : β ∼ N (0, .01) >20000 169 33
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Table 7

Descriptives and P-values for the Henderson et al. (2008) Data (d̂ = .89)

Attitude Strength

group N mean sd

one-sided 15 .16 1.85

two-sided 15 1.82 1.86

H0 : µ1 = µ2 classical p = .021

H≈ : β ∼ N (0, .0344) ppripos = .024



TESTING SMALL VARIANCE PRIORS 32

Table 8

Descriptives and P-values for the Dolan et al. (2009) Data (N=500, ρ̂ = .16)

variable mean sd

openness 3.59 .34

agreeableness 3.42 .35

H0 : ρ = 0 classical p = .00

H≈ : β ∼ N (0, .0094) ppripos = .58
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Table 9

Identical Samples for β, α, and σ2 using U = 1 and U = 1000

percentile α α σ2 σ2 β β

U = 1 U = 1000 U = 1 U = 1000 U = 1 U = 1000

.05 -.37 -.38 .76 .77 -.16 -.17

.10 -.29 -.29 .84 .85 -.13 -.13

.25 -.14 -.15 1.00 1.01 -.07 -.07

.50 .00 .00 1.24 1.23 .00 .00

.75 .15 .15 1.55 1.54 .07 .07

.90 .29 .29 1.92 1.92 .13 .13

.95 .38 .38 2.20 2.21 .16 .16
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Figure 1 . The Null Distribution of ppripos for N = 25, α = 0, σ2 = 1, and xi ∼ N (0, 1)


