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1
Introduction

Although Wainer (1999) argues in “One Cheer for Null Hypothesis Signi-

ficance Testing” that traditional null hypothesis testing can be useful in

certain cases, many researchers have no particular interest in this hypothesis

(‘nothing is going on’). So why test the null hypothesis if one is not interested

in it? Cohen (1994) aptly summarised the criticism of traditional null

hypothesis testing in the title of his paper “The earth is round (p < .05)”,

which stresses the fact that the null hypothesis is almost never a realistic

representation of the population of interest. Let us elaborate on this using

an example inspired by this title.1

The question of the shape of the earth was a recurring issue in scientific

debate during the era of Aristotle (384BC-322BC Rusell, 1997). By that

time, scientists were agreed that the ancient speculations in Persian writings

that the earth was a seven-layered ziggurat or a cosmic mountain, were off

1 The historical figure Aristotle never denied that the earth was round; in fact, from the

third century B.C. onwards, no educated person in the history of Western civilization

believed that the earth was flat (Rusell, 1997). Indeed, Erasthenes (276-195 B.C.) gave

a reasonable approximation of the earth’s circumference and provided strong support for

the hypothesis that the earth is round. However, Aristotle was one of the first scientists

to provide evidence of the earth’s roundness.
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the mark. In fact, the Greek idea that the earth was round had dominated

scientific thinking since as early as the fifth century B.C.. The only serious

opponents were the atomists Leucippus and Democritus, who still believed

that the earth was a flat disk floating in the ocean, as certain ancient

Mesopotamian philosophers had maintained.

Now let us embark on some historical science fiction. In what follows, we

will tell the story of Aristotle’s scientific investigations using different ways of

evaluating hypotheses. In order to falsify the Mesopotamian hypothesis and

provide evidence for the earth’s roundness, we say that Aristotle might have

used an approach based on testing the null hypothesis. Naturally, it is not

our intention to provide an accurate historical account here. We simply want

to provide an example and set the stage for our main point: that more can

be learned from data by using informative hypotheses than the traditional

null hypothesis.

1.1 Traditional Null Hypothesis Testing

If Aristotle had used traditional null hypothesis testing, he might have tested

the following null and alternative hypotheses:2

• H0: the shape of the earth is a flat disk,

• H1: the shape of the earth is not a flat disk.

Aristotle would have gathered data about the shape of the earth and found

evidence against the null hypothesis, for example: (1) stars that were seen in

Egypt were not seen in countries north of Egypt, while stars that were never

beyond the range of observation in northern Europe were seen to rise and

set in Egypt; (2) in eclipses of the moon a curved shadow passed across the

face of the moon; (3) as shown by Eratosthenes, the shadow of an obelisk at

2 Clearly, these hypotheses are not statistical hypotheses and no actual statistical inference

could be carried out; these fictitious hypotheses are purely designed to serve as an example.
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Alexandria extended out from its base at noon during the summer solstice,

while at the same time the sun was directly overhead at Syene, approximately

500 miles south of Alexandria. Together, these observations could not be

taken as evidence of a flat earth. In sum, H0 would have been rejected,

leading Aristotle to conclude that the earth cannot be represented by a flat

disk. But what can actually be learned from this conclusion? Not much!

It tells us that the earth is not a flat disk, but we remain ignorant of the

earth’s actual shape. This ignorance is a result of the alternative hypothesis,

which includes all shapes that are non-flat, for example spherical, but also

pear-shaped, triangular, and so forth.

In actual fact, Aristotle agreed with Pythagoras (582BC - ca. 507BC),

who believed that all astronomical objects have a spherical shape, including

the earth. So, once again embarking on an episode of imaginary history,

Aristotle could also have tested the following null and alternative hypotheses:

• H0: the shape of the earth is a sphere,

• H1: the shape of the earth is not a sphere.

At that time, no one could see the earth as a whole and know it to be

a sphere by direct observation. But one can derive other conclusions from

the hypothesis that the earth is a sphere and use these to test the null

hypothesis. For example, one could predict that if someone sailed west for a

sufficient amount of time, this person would come back to where they started

(Magellan did this). Or one could predict that if the earth was a sphere, ships

at sea would first show their sails above the horizon, and then later as they

sailed closer, their hulls (Galileo observed this). These precise predictions, if

exactly confirmed, would establish a provisional objective reality for the idea

that the earth is a sphere.

Now, imagine that Aristotle continued his search for data and that

he gathered data that yielded evidence against the null hypothesis: while

standing on a mountain top, he noticed the many peaks and valleys and

had already concluded that the shape of the earth was not a perfect
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sphere. Apparently, the earth’s surface has many irregularities and if enough

irregularities are observed it could provide just enough evidence to reject the

null hypothesis. Moreover, most large rock formations do not even vaguely

resemble spheres so, by analogy, the earth could not be expected to have

that shape either. And so it may have happened that Aristotle once again

rejected the null hypothesis, concluding that the earth is not a sphere (Cohen:

“The earth is round (p < .05)”). What can be learned from this conclusion?

Again, not much! The null hypothesis has been rejected, but we are still

ignorant with regard to the shape of the earth.

1.2 Falsification and Beyond

Admittedly, not all methodologists agree on this point. In response to

Aristotle’s imagined disappointment, Popper (1959) would have argued that

this insight is all that Aristotelian science, or any science for that matter,

can hope for. When it comes to general hypotheses, or hypotheses that are

beyond the reach of direct verification (which, in the spaceship-deprived era

of Aristotle was certainly the case), we can only be sure of their falsification.

Direct positive evidence for hypotheses about the shape of the earth cannot

be obtained, so there would be no reason for Aristotle to be disappointed.

Popper would have argued there is no way to prove that the earth is spherical,

therefore we can only hypothesize that it is the shape of a sphere. Since

Aristotle found evidence demonstrating that the earth is not spherical, this

hypothesis is rejected. In fact, according to Popperian reasoning, Aristotle

should rejoice in the fact that at least he now knows the earth is not a sphere!

Nevertheless, is that all we can learn from our observations?

We have gone through two falsifications and rejected both null hypotheses.

However, it might be of interest to know which of the two falsified hypotheses

in our example is best supported by the observations made. Rather than

using the examples given above, we might argue that Aristotle was actually

interested in evaluating the two hypotheses directly against each other:
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• HA: the shape of the earth is a flat disk,

• HB: the shape of the earth is a sphere.

After comparing these two hypotheses with Aristotle’s observations, we

can deduce that of the two hypotheses, the second one is more likely and the

shape of the earth is better represented by a sphere than by a flat disk. Using

this approach, it would have been clear to Aristotle that his observations

provided more support for HB than for HA. In other words, he would have

learned something positive after all!

1.2.1 What Does This Historical Example Teach Us?

Evaluating your expectations directly produces more useful results than

sequentially testing traditional null hypotheses against catch-all rivals. In

this dissertation I take this one step further and show that researchers

are in fact interested in the evaluation of what we will call ‘informative

hypotheses’. These are hypotheses that contain information about the

ordering of parameters.

For example, consider an example taken from Strohmeier, Fandrem, Spiel

and Stefanek (2009), see also, Fandrem, Strohmeier and Roland (2009) about

the extent to which the goal of being accepted by friends is an underlying

function of aggressive behaviour in adolescents, and whether this function is

more predictive than reactive aggression for aggressive behaviour in first and

second generation immigrants compared with the native population. In their

introduction, the authors formulated clear expectations: “Concretely, the

study investigates the predictive power of the goal to be accepted by friends

as underlying function of aggressive behaviour in comparison with reactive

aggression. We are interested whether the goal to be accepted by friends

operates differently in native, first and second generation immigrant boys

and girls. We speculate that the goal to be accepted by friends as underlying

function for aggressive behavior might be more important for first generation

immigrants compared with natives or second generation immigrants. This
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is because first generation immigrants who migrated themselves and who

experienced resettlement are more vulnerable regarding their peer relations

than natives and second generation immigrants. This vulnerability might be

a reason that they also use antisocial means - that is aggressive behaviour -

to reach their goal to be affiliated with and accepted by their peers.”

Note that ‘more important’ can be translated into an informative

hypothesis: among first-generation immigrants, acceptance by friends is a

stronger predictor of aggressive behaviour and reactive aggression is a weaker

predictor of aggressive behaviour than among the other two groups. If you

can formulate such a hypothesis, it is argued in this dissertation that you

should evaluate this informative hypothesis directly.

Nonetheless, evaluating informative hypotheses presupposes that prior

knowledge is available. If that were not the case, it would make no sense to

evaluate informative hypotheses and testing the traditional null hypothesis

would be appropriate. In most applied articles, however, prior knowledge

is available in the form of expectations. Therefore, the assumption of

availability of prior knowledge is not really an issue. M. D. Lee and Pope

(2006) contend that much information is already known before data are

collected (see also M. D. Lee & Wagenmakers, 2005). Jaynes (2003) puts

it more dramatically: “If we humans threw away what we knew yesterday in

reasoning about our problems today, we would be below the level of wild

animals; we could never know more than we can learn in one day, and

education and civilization would be impossible” (p. 87). These statements

are supported by applied articles where researchers evaluated informative

hypotheses, see Chapters 7 and 8, but see also Kammers, Mulder, De

Vignemont and Dijkerman (2009); Meeus, Van de Schoot, Klimstra and

Branje (2010); Van Well, Kolk and Klugkist (2009).
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1.3 Different Types of Hypotheses

In this dissertation we discuss four different types of hypotheses. Let

us illustrate these using an example from Van de Schoot, Velden, Boom

and Brugman (2010). The authors investigated the association between

popularity and antisocial behaviour in a large sample of young adolescents

from preparatory vocational schools (VMBO) in the Netherlands. In this

setting, young adolescents are at increased risk of becoming or becoming

more antisocial. Five, so-called, sociometric status groups were defined in

terms of a combination of social preference and social impact: a popular,

rejected, neglected, controversial, and an average group of adolescents.

Suppose we want to compare these five sociometric status groups in terms

of the number of committed offences reported to the police last year (minor

theft, violence, and so on) and let µ1 be the mean of the number of committed

offences for the popular group, µ2 for the rejected group, µ3 for the neglected

group, µ4 for the controversial group and µ5 for the average group. Different

types of hypothesis can now be formulated.

Informative Hypotheses

The main focus of the current dissertation is on so-called informative

hypotheses, denoted by HI1 , HI2 , . . ., HIN for N hypotheses. These are

hypotheses containing information about the ordering of the means and can

consist of the following constraints:

1. larger than, denoted by ’>’

2. smaller than, denoted by ’<’

3. equal, denoted by ’=’.

Such expectations about the ordering of parameters can stem from

previous studies, a literature review or even academic debate. If no

information is available about the ordering, this is denoted by a comma.
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An informative hypothesis can consist of any combination of constraints.

Consider an imaginary hypothesis that the controversial group reports the

largest number of offences, followed by the rejected group, the average group

and the popular group, while the neglected group has the lowest score. In

this situation the informative hypothesis then becomes: HI1 : µ3 < µ1 <

µ5 < µ2 < µ4. Another expectation could be that the popular, rejected and

average groups report more offences than the neglected group, and fewer

offences than the controversial group. Where the popular, rejected and

average group can have any score as long as it is lower than the neglected

group and higher than the controversial group, HI2 : µ3 < {µ1, µ5, µ2} < µ4.

Traditional null hypothesis

Second, there is the traditional null hypothesis (denoted by H0), which states

that nothing is going on, H0 : µ1 = µ2 = µ3 = µ4 = µ5.

Unconstrained hypothesis

If no constraints are imposed on any of the means, and any ordering is

equally likely, the hypothesis is called unconstrained (denoted by HU):

HU : µ1 , µ2 , µ3 , µ4 , µ5.

1.4 Evaluating Informative Hypotheses

In the literature different procedures are described that allow for the

evaluation of informative hypotheses. First of all, there are approaches that

render a p-value for the comparison of HIn (which sometimes has the role of

null-hypothesis) with an alternative hypothesis. A good overview is given by

the books of Barlow, Bartholomew, Bremner and Brunk (1972); Robertson,

Wright and Dykstra (1988); and Silvapulle and Sen (2004). In addition, the

Journal of Statistical Planning and Inference published in 2002 a special issue

on testing inequality constraint hypotheses. Furthermore, an adaptation of
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the classical F-test for analysis of variance (ANOVA) has been proposed by

Silvapulle, Silvapulle and Basawa (2002), see also Kuiper and Hoijtink (2010);

Silvapulle and Sen (2004). This new test is called the F -bar test, which is a

confirmatory method to test one single informative hypothesis in two steps,

for example:

H0 : µ3 = µ1 = µ5 = µ2 = µ4

versus

HI1 : µ3 < µ1 < µ5 < µ2 < µ4 ,

and

HI1 : µ3 < µ1 < µ5 < µ2 < µ4

versus

HU : µ3, µ1, µ5, µ2, µ4 ,

where in the second hypothesis test HI1 serves as the null hypothesis.

A second way of evaluating an informative hypothesis is to use a model

selection approach. Model selection is not a test of the model in the sense

of hypothesis testing, rather it is an evaluation between models using a

trade-off between model fit and model complexity. Given a data set, several

competing statistical models may be ranked according to their value on the

model selection tool used and the one with the best trade-off is the winner

of the model selection competition. Problems with standard model selection

tools arise because default model comparison tools, for example AIC (Akaike,

1981), BIC (Schwarz, 1978), and DIC (Spiegelhalter, Best, Carlin & Van

Der Linde, 2002) are not equipped to deal with inequality constraints, see

Chapters 3 and 6. Alternative model selection procedures are the Paired-

Comparison Information Criterion (PCIC) proposed by Dayton (2003), see

also an application in Taylor et al. (2007). The literature contains also one

modification of Akaikes information criterion that can be used in the context

of inequality constrained analysis of variance models. It is called the order-

restricted information criterion (ORIC, Anraku, 1999; Kuiper & Hoijtink,
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2010) with an application in for example Hothorn, Vaeth and Hothorn (2009)

and for an introduction to the ORIC see Chapter 3.

One method of model selection which receives particular attention in this

dissertation involves using Bayes factors. In this method each hypothesis of

interest is provided with a ‘degree of support’ which tells us exactly how much

support there is for each of the informative hypotheses under investigation.

This process involves collecting evidence that is meant to provide support

for or against a given hypothesis and as evidence accumulates, the degree

of support for a hypothesis increases or decreases. Several technical articles

have been published on how to evaluate informative hypotheses using Bayes

Factors (Hoijtink, 1998, 2001; Hoijtink & Klugkist, 2007; Hoijtink, Klugkist

& Boelen, 2008; Kato & Hoijtink, 2006; Klugkist, Laudy & Hoijtink, 2005;

Laudy, Boom & Hoijtink, 2005; Laudy, Zoccolillo et al., 2005; Laudy &

Hoijtink, 2007; Mulder, Hoijtink & Klugkist, 2009; Mulder, Klugkist et al.,

2009). For an introduction to this method see Chapter 4 (see also the book of

Hoijtink, Klugkist & Boelen, 2008) and for a comparison with other methods

of evaluating hypotheses see Chapter 2 (see also, Kuiper & Hoijtink, 2010;

Kuiper, Klugkist & Hoijtink, 2010).

1.5 Outline of Dissertation

The main topic of in the current dissertation is informative hypotheses and

I take three different perspectives on this kind of hypothesis.

In the first part of this dissertation I take a philosophical approach to the

question of why one should evaluate informative hypotheses in the first place.

In Chapter 2 I provide arguments as to why the evaluation of informative

hypotheses goes wrong when traditional null hypothesis testing is used.

Bayesian model selection is then used to evaluate the hypotheses of interest

and the results are compared with the results of traditional hypothesis

testing. In Chapter 3 background knowledge, or prior information, is

philosophically defined and its relationship with model selection procedures is



1.5. OUTLINE OF DISSERTATION xv

investigated. It is argued that the measure for complexity in model selection

criteria needs to be refined. Two alternative model selection criteria are

introduced and investigated in relation to the notion of simplicity for the

evaluation of informative hypotheses.

In part II I adopt a statistical perspective and focus on the scope

for extending the literature on the evaluation of informative hypotheses.

In Chapter 4, I first provide an introduction for non-statisticians to the

method of evaluating informative hypotheses using Bayesian model selection

as described in, for example, Hoijtink, Klugkist and Boelen (2008), see

also Mulder, Klugkist et al. (2009). In Chapter 5, a method based on

the parametric bootstrap to evaluate informative hypotheses in structural

equation models is described. The software program Mplus (Muthén &

Muthén, 2007) is used for this method. It is also shown that the alpha level

needs to be calibrated when evaluating informative hypotheses using the

parametric bootstrap procedure. In Chapter 6, the prior predictive deviance

criterion, or prior DIC, is derived as an alternative to the well known DIC,

of Spiegelhalter et al. (2002). It is shown that there are situations in which

the prior DIC can be used to evaluate informative hypotheses whereas the

DIC of Spiegelhalter and colleagues fails to do so. However, it is shown

that even the prior DIC fails in situations where inequality hypotheses are

not supported by the data, and an alternative loss function is proposed

that can be approximated by a new information criterium, called the Prior

Information Criterion, or PIC.

In part III, two applications in the field of psychology are provided in

which the research question is evaluated using informative hypotheses. In

Chapter 7 I investigate the levels of self-concept (high or low) of delinquent

young adults. Different expectations of low and high self-concept and

antisocial behaviour are evaluated using Bayesian model selection. In

Chapter 8 the progression and stability of adolescent identity formation is

evaluated. On the basis of previous research, several assumptions about the

increase and decrease of identity statuses over time are investigated.
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Evaluating Expectations about Negative

Emotional States of Aggressive Boys using

Bayesian Model Selection

Van de Schoot, R., Hoijtink, H., Mulder, J., Van Aken, M.,

Orobio de Castro, B., Meeus, W. & Romeijn, J.-W.

In press for Developmental Psychology

Abstract

Researchers often have expectations about the research outcomes in regard to inequality

constraints between, for example, group means. Consider the example of researchers

who investigated the effects of inducing a negative emotional state in aggressive boys. It

was expected that highly aggressive boys would, on average, score higher on aggressive

responses towards other peers than moderately aggressive boys, who in turn score higher

than non-aggressive boys. In most cases, null hypothesis testing is used to evaluate

such hypotheses. We will show, however, that hypotheses formulated using inequality

constraints between the group means are generally not evaluated properly. The wrong

hypotheses are tested, i.e. the null hypothesis that group means are equal. In this paper,

we propose an innovative solution to these above-mentioned issues using Bayesian model

selection, which we illustrate using a case study.
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Many psychology researchers rely on regression analysis, analysis of variance

or repeated measures analysis to answer their research questions. The default

approach in these procedures is to test the classical null hypothesis that

‘nothing is going on’: regression coefficients are zero, there are no group

differences, etc. We argue that many researchers have some very strong

prior beliefs about various components outcomes of their analyses and are

not particularly interested in testing a traditional null hypothesis (see, e.g.,

Cohen, 1990, 1990). For example, a researcher might expect that highly

aggressive boys would, on average, score higher on aggressive responses

towards other peers than moderately aggressive boys, who in turn would

score higher than non-aggressive boys. Note that we will refer to such explicit

expectations as informative hypotheses.

This aforementioned explicit expectation is clearly not the same as

the traditional null hypothesis: all scores for the boys are equal. Often

researchers are not particulary interested in this null hypothesis. However,

the average researcher specifies the traditional null hypothesis in a rather

robotic way. Note that this is a critique of them not of the method, since

classical null hypothesis testing is very useful for testing the null hypotheses if

you are interested in it. Even so, there are already researchers who actually

use prior beliefs directly in their data analysis, see for example Kammers

et al. (2009); Meeus, Van de Schoot, Keijsers, Schwartz and Branje (2010);

Meeus, Van de Schoot, Klimstra and Branje (2010); Van de Schoot and Wong

(2010); Van de Schoot, Hoijtink and Doosje (2009); Van Well et al. (2009);

Wong and Van de Schoot (2010).

In the current paper we show how subjective beliefs influence analyses

in hidden ways and how they might be incorporated explicitly in data

analysis. That is, we describe, by means of a case study, what can happen

if a researcher has informative hypotheses, and uses traditional frequentist

analysis or thoughtful frequentist analysis. Subsequently, we elaborate on an
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alternative strategy: the evaluation of informative hypotheses by means of

Bayesian model selection (Hoijtink, 1998, 2001; Hoijtink & Klugkist, 2007;

Hoijtink, Klugkist & Boelen, 2008; Kato & Hoijtink, 2006; Klugkist et al.,

2005; Klugkist, Laudy & Hoijtink, 2010; Kuiper & Hoijtink, 2010; Laudy,

Zoccolillo et al., 2005; Laudy & Hoijtink, 2007; Mulder, Hoijtink & Klugkist,

2009; Mulder, Klugkist et al., 2009). Furthermore, we use one of our own

studies (Orobio De Castro, Slot, Bosch, Koops & Veerman, 2003) in the

area of experimental psychology to illustrate that our aim is not to disregard

any specific study, but to discuss a problem very common to psychological

research, a problem encountered in our own research as well.

2.1 Example: Emotional State in Aggressive Boys

Orobio De Castro et al. (2003) investigated the effects of inducing a negative

emotional state in aggressive boys. It was questioned whether inducing

negative emotions would make boys with aggressive behaviour problems

attribute more aggressive responses and hostile intentions to their peers in

comparison to the group of non-aggressive boys. The authors examined three

levels of aggression: high, moderate, and no aggression.

The highly aggressive group consisted of boys referred to special education

for aggressive behaviour problems. Informed consent was obtained from all

participants and their parents. The moderately aggressive group consisted of

boys in regular education with teacher-rated externalizing behavior problems

scores on the Teacher’s Report Form (TRF) in the borderline or clinical

range. No SES information was made available from the original paper.

Mild negative emotions were induced by manipulating participants’ per-

formance in a computer game. Each participant completed two conditions: a

neutral-emotion condition prior to playing a computer game (neutral) and a

negative-emotion condition following emotional manipulation after unjustly

losing the game (negative). Hostile intent attributions and aggressive



6 CHAPTER 2. NEGATIVE EMOTIONAL STATES OF AGGRESSIVE BOYS

responses to other peers were assessed by presenting the boys with eight

vignettes concerning ambiguous provocation by peers, for example:

Imagine: You and a boy in your class are taking turns at a

computer game. Now it’s your turn, and you are doing great.

You are reaching the highest level, but you only have one life left.

You never came this far before, so you are trying very hard. The

boy you are playing with watches the game over your shoulder.

He sees how far you have come. Then he shouts ”Watch out!

You’ve got to be fast now!” and he pushes a button. But it was

the wrong button, and now you have lost the game!

Two open-ended questions were asked directly after listening to each vignette:

(1) why the provocateur in the vignette acted the way he did; (2) how the

participants would respond if they were to actually experience the events

portrayed in the vignette. Answers to the first question were coded as benign,

accidental, ambiguous, or hostile. The reactions of the boys to the second

question were coded as aggressive, coercive, solution attempt, or avoidant.

By counting the number of vignettes in each condition with a hostile or an

aggressive response to the questions, respective scores for hostile intentions

and aggressive responses were calculated.

2.1.1 Expectations

The first expectation (A) was that negative emotion manipulation would

invoke more hostile intentions and aggressive responses at all levels of

aggression. This expectation was based on Dodge (1985), who hypothesized

that a negative emotional state makes children more prone to attribute

hostile intentions to other children they interact with. The constraints

corresponding to the informative hypothesis HA,host in relation to hostile

attribution are displayed in Table 2.1. It can be seen, for example, that the

mean score for non-aggressive boys in the neutral condition is expected to be

lower than the mean score for non-aggressive boys in the negative condition,
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Mneu,non < Mneg,non. Note that the same constraints hold for aggressive

responses (HA,aggr).

A second expectation (B) was that emotion manipulation would influence

aggressive boys more than less aggressive boys. Consequently, the tendency

to attribute more hostile intentions to peers in ambiguous situations was

expected to increase more in highly aggressive boys than in moderately

aggressive and non-aggressive boys. As was argued by Orobio De Castro

et al. (2003), this hypothesis seems plausible, given the fact that many

children with aggressive behaviour problems have histories of abuse, neglect,

and rejection (Coie & Dodge, 1998). As a result, these highly aggressive

boys exhibit a greater tendency to attribute hostile intentions to peers

in ambiguous situations than non-aggressive boys do (see also, Orobio de

Castro, Veerman, Koops, Bosch & Monshouwer, 2002). The constraints

corresponding to the informative hypothesis for hostile attribution (HB,host)

are displayed in the middle of Table 2.1. These constraints imply, for

example, that the difference between the negative and neutral conditions

is smaller for the non-aggressive group than for the moderately aggressive

group, [Mneu,non −Mneg,non] < [Mneu,mod −Mneg,mod]. The same constraints

also hold for aggressive responses (HB,aggr).

A third expectation (C) was a combination of expectation A and B. The

authors expected that negative emotion manipulation would invoke more

hostile intentions and aggressive responses at all levels of aggression and at

the same time that emotion manipulation would influence aggressive boys

more than less aggressive boys. The difference between the neutral and the

negative condition would become larger if boys are more aggressive. The

hypotheses HC,host and HC,aggr combine the constraints presented in the

upper part of Table 2.1 with the constraints presented in the middle of Table

2.1.

The research question investigated throughout the current paper is which

of these three informative hypotheses, HA, HB, or HC , is best supported by
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the data. We try to answer this research question using traditional frequentist

analysis, thoughtful frequentist analysis and Bayesian model selection.

2.2 Traditional Frequentist Analysis

The traditional frequentist approach, which is most often used in practice,

is to analyse data like ours using tractional null hypothesis testing. In our

example, aggressive responses and hostile intentions were used as dependent

variables in two 3× 2 analyses of variance (ANOVA) with level of aggression

(high, moderate, and no aggression) as a between-participants factor and

the condition (neutral/negative) as a within-participants factor. Three

null hypotheses could be tested for both hostile intentions and aggressive

responses:

• H0,1: There is no difference between levels of aggression;

• H0,2: There is no difference between the condition means;

• H0,1×2: There is no interaction between levels of aggression and the

condition.

The results of these tests are presented in Table 2.2.

It can be seen in this table that for both aggressive responses and hostile

intentions there appear to be significant differences between aggression level

means and that there were no differences between condition means for both

aggressive responses and hostile intentions. However the only significant

result for the interaction effect is found for hostile attribution (i.e., level

of aggression × condition). Many researchers would now perform a follow-

up analysis, which we also do later on, but we first show what happens if

the informative hypotheses HA, HB, and HC are evaluated using the null

hypotheses H0,1, H0,2 and H0,1×2.
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Table 2.2: Results of the Two 3x2 Univariate Analyses of Variance

Hostile Aggressive

F p F p

Aggressive level (df : 2, 55) 2.91 .047 8.82 <.001

Condition differences (df : 2, 55) 1.10 .29 0.82 .36

Interaction (df : 2, 54) 3.18 .049 1.46 .24

2.2.1 What goes wrong?

Although traditional null hypothesis testing has been the dominant research

tool for the latter half of the past century it suffers from serious complications

if used in the wrong way. That is when the null hypotheses H0,1, H0,2 and

H0,1×2 are used to answer the question which informative hypothesis HA,

HB, or HC is best supported by the data. Let us elaborate on this.

The first and most vital problem that arises is that there is no straight-

forward relationship between the informative hypotheses under investigation

and the null hypotheses that are actually being tested. (Orobio De Castro et

al., 2003) were not interested in testing the hypotheses H0,1, H0,2 and H0,1×2

that were tested in the ANOVA. Although Wainer (1999) argues in “One

Cheer for Null Hypothesis Significance Testing” that the null hypothesis can

be useful in some cases, many researchers have no particular interest in the

null hypothesis (see, e.g., Cohen, 1990). So why test the null hypothesis if

one is not interested in it?

Furthermore, the informative hypotheses HA, HB, and HC differ from the

traditional alternative hypotheses: ‘not H0,1’, ‘not H0,2’ and ‘not H0,1×2’. As

can be seen in Table 2.2, some of the null hypotheses are rejected in favor of

the alternative hypothesis (significant results in bold), but what does this tell

us? For example, for hostile attribution there is a main level of aggression

difference and an interaction between level of aggression and condition. Does

this provide any evidence that one of the three informative hypotheses is more

likely than the other? Clearly, the answer is ’no’, because neither the null
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hypotheses nor the alternative hypotheses resemble any of the informative

hypotheses under investigation.

In conclusion, using traditional null hypothesis testing does not result in

a direct answer to the research question at hand. This issue is usually solved

by a visual inspection of the sample means. When inspecting Table 2.3,

which shows the descriptive statistics (i.e. standardized means), it appears

there is a violation of expectation A with regard to hostile attribution: the

mean of the non-aggressive group is lower in the negative condition than in

the neutral condition, rather than higher. Does this imply that expectation

A is not supported by the data? Or is this a random deviation? The mean

differences for hostile attribution between the neutral and negative condition

for non-, moderate- and high-aggressive boys, presented in the lower part of

Table 2.3, are in agreement with the constraints of hypothesis B. However,

does this imply that HB is preferred over HA? What if there would have

been a small deviance of the constraints imposed on the mean differences:

−.45,−.46, .45? Or what if there would have been a larger deviance between

the mean differences: −.45,−.55, .45? When would the difference be large

enough to conclude that the informative hypothesis would be preferred?

2.2.2 Multiple Hypothesis Testing and Power

Alongside the complication of using null hypotheses testing the wrong way,

the procedure of traditional null hypothesis testing suffers from a number of

complications itself. Two important issues will be discussed here: an increase

of type I errors due to multiple analyses and the loss of power that results

from the adjustment often used to correct for these errors.

Multiple tests are typically needed to evaluate the informative hypotheses

at hand and this can be problematic (e.g., Maxwell, 2004). In our example,

six F-tests were performed. In general, multiple testing increases the family-

wise error rate, which is the probability of incorrectly rejecting at least one

null hypothesis of all hypotheses tested. For example, for two independent

tests and an alpha level of .05 per test, the probability of correctly concluding
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that both null hypotheses are not rejected .95 × .95 = .90 and for six tests

this is .956 = .74. In the latter case, the probability of incorrectly rejecting

at least one null hypothesis is 1 -.74 = .26. Note that the six tests in Table

2.2 are not independent, but in this situation the overall alpha level is higher

than .05 as well.

A solution to the problem of type I error inflation is to control the overall

alpha level by using, for example, the often used Bonferroni correction. For

this procedure, the overall alpha level is divided by the number of tests

performed. The price for using such a correction is a severe reduction in

power (see, Cohen, 1992). If the alpha level is corrected, this also requires

a larger sample size to maintain sufficient power, which may not always be

realistic. In our running example, ethical and clinical considerations urge us

to limit, to an absolute minimum, the number of boys with severe behaviour

problems who can be asked to participate in such a taxing manipulation.

These sample size restrictions are evident in many studies in our field.

Moreover, the Bonferroni correction is not unproblematic, the procedure

is rather conservative, meaning that the smaller the alpha level, the lower

the power. Improvements of the Bonferroni procedure have been developed,

including the false discovery rate (Benjamini & Hochberg, 1995) or the Holm-

Bonferroni method (Holm, 1979); for an overview see Hsu (1996). However,

larger sample sizes are still needed in these cases, and for it remain difficult

to determine how the overall alpha level should be corrected with all of these

methods.

For example, when using any form of correction, should the overall alpha

be corrected separately for each dependent variable? Or should the overall

alpha be corrected by using the total number of tests? The answers to these

questions are not clear. If we were to use the Bonferroni correction α
3

for our

example, then the significant results for hostile attribution disappear and the

conclusion should be that there are no group main differences and that there

is no interaction between group and condition. The null hypothesis cannot
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be rejected, but what does this say about the informative hypotheses HA,

HB, and HC?

For aggressive responses, aggression level differences remain significant

when using α
3
, implying that (Mnon,neg+Mnon,neu) 6= (Mmod,neg+Mmod,neu) 6=

(Mneg,high + Mneu,high), where M is the mean score of a group within a

condition. A significant result would indicate that (0.52 + 0.47 = 0.99) 6=
(1.02 + 1.08 = 1.10) 6= (1.12 + 0.93 = 2.05), but what can we learn from this

with respect to HA, HB, and HC? Clearly, the answer is ‘not much’. Even

if we pursue this significant result further using post-hoc comparisons, these

comparisons do not provide information about the informative hypotheses

A, B, or C.

2.3 Thoughtful Frequentist Analysis

What have we learned so far? Testing the null hypotheses H0,1, H0,2 and

H0,1×2 followed by a visual inspection of the data is not the appropriate tool

for evaluating the informative hypotheses HA, HB, and HC . If a researcher

has explicit expectations in the form of inequality constraints between means,

he or she might be better off by using alternative procedures. In this section,

we use thoughtful frequentist analysis, i.e. planned comparisons, to evaluate

HA, HB, and HC .

First, three one-sided t-tests could be performed to evaluate HA:

• Mneu,non < Mneg,non (phostile = .22/2; paggr = .60/2);

• Mneu,mod < Mneg,mod (phostile = .88/2; paggr = .60/2);

• Mneu,high < Mneg,high (phostile = .02/2; paggr = .06/2).

To evaluate HB planned comparisons could be used, a good primer is

presented in Rosenthal, Rosnow and Rubin (2000), where several types of

contrasts are introduced. In our example, HB could be evaluated using the
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linear contrast

−1×[Mneu,non−Mneg,non]+0×[Mneu,mod−Mneg,mod]+1×[Mneu,high−Mneg,high].

A researcher who expects a monotonic relationship can create lambda weights

that represent that hypothesis (see, Rosenthal et al., 2000). For now, we

will use a linear increase and since this hypothesis is also directional, we

expect an increase in the difference between conditions; the resulting p-value

can be divided by two. The results are a significant increase for hostile

(p = .008/2), but a non-significant result for aggression (p = .32/2). Both

pieces of information (i.e. the results of the one-sided t-tests and planned

comparison) need to be combined to evaluate HC , but it is unclear how to

do so.

Although the above procedure generates better results than the naive

procedure presented in the previous section, there is still one major problem

related to thoughtful frequentist analysis. Recall that we wanted to evaluate

HA, HB, and HC . Using planned comparisons, in whatever form, results

again in testing the null hypothesis. These tests are clearly not the same as

evaluating HA, HB, and HC . A different approach is called for and this is

what we do in the next section.

2.4 Bayesian Evaluation of Informative Hypotheses

As put forward by Walker, Gustafson and Frimer (2007) “the Bayesian

approach offers innovative solutions to some challenging analytical problems

that plague research in [...] psychology” (see also, M. D. Lee & Pope, 2006;

M. D. Lee & Wagenmakers, 2005). The core idea of Bayesian inferences

is that a priori beliefs are updated with observed evidence and both are

combined in a so-called posterior distribution. In the social sciences, however,

only few applications of Bayesian methods can be found; one good example

is presented in Walker, Gustafson and Hennig (2001). The authors used

standard statistical techniques as well as a Bayesian approach to investigate
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consolidation and transition models in the domain of moral reasoning. The

posterior distribution of reasoning across stages of moral reasoning was

used to predict subsequent development. Another example is the study of

Schultz, Bonawitz and Griffiths (2007) about causal learning processes in pre-

schoolers. Bayesian inference was used in this article to provide a rationale

for updating children’s beliefs in light of new evidence and was used to explore

how children solve problems.

2.4.1 Bayes in the Social Sciences

An important contribution Bayesian methods can offer to the social sciences

is the evaluation of informative hypotheses formulated with inequality

constraints using Bayesian model selection. Many technical papers have

been published about this method in statistical journals (Hoijtink, 1998,

2001; Hoijtink & Klugkist, 2007; Hoijtink, Klugkist & Boelen, 2008; Kato

& Hoijtink, 2006; Klugkist et al., 2005, 2010; Kuiper & Hoijtink, 2010;

Laudy, Zoccolillo et al., 2005; Laudy & Hoijtink, 2007; Mulder, Hoijtink &

Klugkist, 2009; Mulder, Klugkist et al., 2009). Applied psychology/social

science articles that use this method to evaluate hypotheses have been

published as well. For example, in a study by Van Well et al. (2009), the

authors investigated whether a possible match between sex or gender role

identification on the one hand and gender relevance of a stressor on the

other hand would increase physiological and subjective stress responses. A

first expectation represented a sex match effect; participants were expected

to be most reactive in the condition that matches their sex. In a similar way,

gender match, sex mismatch, and gender mismatch effects were evaluated

using Bayesian model selection software. Another example is the study

by Meeus, Van de Schoot, Keijsers et al. (2010). In this study, Bayesian

model selection was used to evaluate the plausibility of certain patterns of

increases and decreases in identity status membership on the progression and

stability of adolescent identity formation. Moreover, expected differences in

prevalence of identity statuses between early-to-middle and middle-to-late
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adolescents and males and females were evaluated. In sum, Bayesian model

selection as described in, for example Hoijtink, Klugkist and Boelen (2008),

is gaining attention and is a flexible tool that can deal with several types of

informative hypothesis.

The major advantage of evaluating a set of informative hypothesis using

Bayesian model selection is that prior information can be incorporated into

an analysis. As was argued by Howard, Maxwell and Fleming (2000),

replication is an important and indispensible tool in the social sciences.

Evaluating informative hypotheses fits within this framework because results

from different research papers can be translated into different informative

hypotheses. The method of Bayesian model selection can provide each

informative hypothesis with the degree of support provided by the data. As a

result, the plausibility of previous findings can be evaluated in relation to new

data, which makes the method described in this paper an interesting tool for

replication of research results. Another advantage of evaluating informative

hypotheses is that more power is generated with the same sample size. An

increase in power is achieved because using the data to directly evaluate HA,

HB and HC by evaluating HA versus HB versus HC is more straightforward

than testing several null hypotheses that are not related to the hypotheses

of interest.

2.4.2 Software

In this paper we analysed the informative hypotheses of our example using

the software presented in (Mulder, Klugkist et al., 2009). The method

described in Mulder et al. can deal with many complex types of (in)equality

constraints in multivariate linear models, e.g. MANCOVA, regression

analysis, repeated measure analyses with time varying and time in-varying

covariates. A typical example of an informative hypothesis in the context

of regression analysis can be found in Deković, Wissink and Meijer (2004).

It was hypothesized that adolescent disclosure is the strongest predictor of
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antisocial behaviour, followed by either a negative or positive relation with

the parent.

Software is also available for evaluating informative hypotheses in

AN(C)OVA models (Klugkist et al., 2005; Kuiper & Hoijtink, 2010), latent

class analysis (Hoijtink, 1998, 2001; Laudy, Zoccolillo et al., 2005) as well

as order restricted contingency tables (Laudy & Hoijtink, 2007; Klugkist et

al., 2010). Readers interested in this software can visit www.fss.uu.nl/ms/

informativehypothesis. Users of the software need only provide the data and

the set of constraints; the Bayes factors are computed automatically by the

software. A first attempt in analysing data can best be made by using the

software program ‘confirmatory ANOVA’ (Kuiper et al., 2010). We refer to

the book of Hoijtink, Klugkist and Boelen (2008) as a first step for interested

readers.

2.5 Introduction to Bayesian Model Selection

In this section we provide a brief introduction to the evaluation of informative

hypotheses formulated with inequality constraints using Bayesian model

selection. The main ideas are introduced below, and we refer interested

readers to S. Lynch (2007) for a general introduction to Bayesian analysis

and we refer to Gelman, Meng and Stern (1996) for a technical introduction

to Bayesian analysis. For incorporating inequality constraints in the context

of Bayesian model selection, we refer interested readers to Hoijtink, Klugkist

and Boelen (2008).

2.5.1 Bayes Factor

As was shown by Klugkist et al. (2005) informative hypotheses can be

compared using the ratio of two marginal likelihood values, which is a

measure for the degree of support for each hypothesis provided by the data

(see, e.g., Hoijtink, Klugkist & Boelen, 2008). This ratio results in the Bayes

factor, see Kass and Raftery (1995) for a statistical discussion of the Bayes
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factor. The outcome represents the amount of evidence in favour of one

hypothesis compared with another hypothesis.

Returning to our example of Orobio de Castro et al. (2003), the

informative hypotheses HA, HB and HC can be evaluated using Bayesian

model selection. To do so, we first compare these informative hypotheses

to a so-called unconstrained hypothesis, denoted by Hunc. A hypothesis is

unconstrained if no constraints are imposed on the means. The comparison

with Hunc is made because it is possible that all informative hypotheses under

investigation do not provide an adequate description of the population from

which the data were sampled. In that case, the unconstrained hypothesis

will be favored by Bayesian model selection. Hence, Bayesian model selection

protects a researcher against incorrectly choosing such a ’bad’ hypothesis.

As was shown by Klugkist et al. (2005), the Bayes factor (BF) of HA

versus Hunc can be written as

BFA,unc =
fi
ci
, (2.1)

where fi can be interpreted as a measure for model fit and ci as a measure

for model complexity of HA. The Bayes factor of HA versus HB can then be

written as:

BFA,B =
BFA,unc
BFB,unc

. (2.2)

The Bayes factor in Equation (2.1) combines model fit and complexity and

represent the amount of evidence, or support from the data, in favor of one

hypothesis (say, HA) compared to another hypothesis (say, HB).

The results may be interpreted as follows: BFA,B = 1 states that the two

hypotheses are equally supported by the data; BFA,B = 10 states that the

support for HA is 10 times stronger than the support for HB; BFA,B = 0.25

states that the support for HB is 4 times stronger than the support for HA.

Note that there is no cut-off value provided; we return to this issue in the next

section, but let us first re-analyse our example, and after that we elaborate

on fi and ci.
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2.5.2 Example Reconsidered

To re-analyse the data of Orobio De Castro et al. (2003) we computed the

Bayes factors using two analysis of variance models, one for hostile attribution

and one for aggressive response. The results are presented in Table 2.4.

For hostile attribution the BFA,unc of HA compared to Hunc is 0.24.

This implies that HA is not better than the unconstrained hypothesis and

is consequently not supported by the data (accounting for model fit and

complexity). The BFB,unc of HB compared to Hunc is 4, indicating that

support from the data is 4 times stronger for HB than for Hunc. The BFC,unc

indicates that support from the data is 1.5 times stronger for HC than for

Hunc. In sum, only HB and HC are supported by the data.

Using these results, one can compute a Bayes factor between two

informative hypotheses. The resulting Bayes factor is equal to the ratio

of the Bayes factor for each informative hypothesis with the unconstrained

hypothesis by using Equation (2.2). The BFB,C for hostile attribution

between HB and HC is 4
1.5

= 2.66, which means that the support for HB

is 2.66 times stronger than the support for HC . A comparison with HA is

not necessary since the constraints of this hypothesis are not supported by the

data anyway. In conclusion, there is no support for the expectation that an

increase in hostile intentions takes place for all three groups following emotion

manipulation, but there is support for the expectation that the increase in

Table 2.4: Estimates for Bayes Factors against Hunc, model fit and model complexity for

HA, HB , and HC

Hostile Aggressive

fi ci BF fi ci BF

HA .06 .25 0.24 .23 .25 0.92

HB .64 .16 4.00 .02 .16 0.12

HC .03 .02 1.50 1 e−6 .02 0.00

Hunc 1 1 1 1 1 1
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hostile intentions becomes larger when the groups consist of more aggressive

boys.

Similar computations can be performed for the aggressive response, see

Table 2.4. However, none of the hypotheses under investigation is better

than an unconstrained hypothesis. Consequently, none of the hypotheses

give an adequate description of the population from which the data were

sampled. As a result, there is no increase in aggressive response following

emotion manipulation and there is no support for the expectation that the

increase in aggressive response becomes larger when the groups consist of

more aggressive boys. A combination of both hypotheses, HC , receives even

less support.

2.5.3 Complexity and Fit

For a better understanding of the Bayes factor and its relation with model

fit and model complexity we elaborate on fi and ci. As was shown before,

Bayesian model selection provides the degree of support for each hypothesis

under consideration and combines model fit and model complexity. It has

a close link with classical model selection criterion such as AIC (Akaike,

1981) and BIC (Schwarz, 1978) that also combine fit and complexity to

determine the support for a particular model. However, in contrast to

Bayesian model selection these classical criteria are as of yet unable to

deal with hypotheses specified using inequality constraints (Van de Schoot,

Romeijn & Hoijtink, 2010). In the specific application of Bayesian model

selection used in this paper, the Bayes factors selection criteria also combine

model fit and complexity, but is able to account for inequality constraints.

As will now be illustrated, complexity and fit are (although implicitly) also

important parts of Bayesian model selection.

Model Complexity

The first component of the Bayes factor is model complexity, ci, which can

be computed before observing any data. The Bayes factor incorporates the
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complexity of a hypothesis by determining the number of restrictions imposed

on the means. Note that model complexity is independent of the data because

it is the proportion of the prior distribution in agreement with the constraints.

Let us elaborate on this using our running example.

According to Sober (2002), the simplicity of a hypothesis can be seen as

an indicator of the amount of information the hypothesis provides. Classical

model selection tools favor models that allow for fewer possibilities, and

call such models simpler. Relating this to, for example, the AIC and BIC,

where complexity is measured as the number of parameters in a model, the

more dimensions are ’shaved’ away the simpler the model becomes. We

maintain that there is also such a natural relation between introducing

inequality constraints and ruling out possibilities, that is, when specifying

such inequality constraints, a researcher also ’shaves’ away parameter space

volume. In sum, a simple hypothesis contains more restrictions and contains

more information and as such, is more specific and should be favoured by

the model selection procedure.

Returning to our example, the most complex hypothesis is always Hunc,

in the sense that all combinations of means are allowed and no constraints are

imposed. Therefore, ci for Hunc is equal to 1, see Table 2.4. Let us consider

the hypotheses specified for hostile attribution. There are two constraints

specified for HB (see Table 2.1). Consequently, not all combinations of

means are possible. HB is therefore considered simpler than Hunc. Three

constraints are specified for HA and this hypothesis is even simpler than HB.

The simplest hypothesis is HC because here the most information is added:

the constraints of HA in addition to the constraints of HB. With respect to

complexity, the hypotheses can be ordered from simplest to most complex:

HC , HB, HA.

In Table 2.4 estimates for model complexity are displayed and our

expected ordering for both hostile attribution and aggression is confirmed.

That is, the proportion of the prior distribution in agreement with the

constraints for HA is .25 and for HC only .02, making this latter hypothesis
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less complex because more information is specified in term of the number of

inequality constraints.

Model Fit

After observing some data, the second component of the Bayes factor is

model fit, fi. Loosely formulated, it quantifies the amount of agreement of

the sample means with the restrictions imposed by a hypothesis.

Consider the sample means in Table 2.3. The observed sample means

fit perfectly with an unconstrained hypothesis because no constraints are

imposed on the means. Consequently, Hunc always has the best model fit

compared to any other informative hypothesis and fi = 1, see Table 2.4.

With respect to the informative hypothesis on hostile attribution, it appears

that one constraint is violated for HA: the sample mean of the non-aggressive

group for the neutral condition is higher for the negative condition rather

than lower. As a result, the model fit of HA is worse than the model fit for

Hunc. For HB there appeared to be no violations of the constraints. Since

HC is a combination of the constraints of HA and HB, there is one violation

of the constraints imposed by this hypothesis. In sum, with regard to model

fit, HB performs better than HA and HC , respectively. In Table 2.4 estimates

for model fit for the three informative hypotheses on hostile attribution are

displayed and as can be seen the expected ordering is confirmed. With regard

to three informative hypotheses on aggression the fit is rather low for all three

hypotheses. After computing fi and ci, the Bayes factor shown in Equation

(2.1) can be computed, for example for hostile attribution

BFB,unc =
fi
ci

=
.64

.16
= 4 . (2.3)

As was correctly noticed by one of the reviewers, it can be illustrative

to provide more information than just the Bayes factors in terms of model

fit and model complexity. Information about the posterior distributions of

the means and their credibility intervals can be found in Figure 2.1. The

interpretation of a Bayesian 95% credibility interval is that, for example,
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Figure 2.1: Posterior distributions for all groups on the dependent variables hostile

attribution and aggressive responses. Note that ’mn’ denotes posterior mean and ’C.I.’

denotes the Bayesian credibility interval.
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the posterior probability that Mneu,non for hostile lies in the interval from

-.32 to .66 is 0.95 (see, e.g., S. Lynch, 2007). These intervals are often

used in practice to decide whether means differ from zero or from other

means. It can for example be seen that the posterior mean Mneu,non for

aggression is .58 and there is a .95 probability that it is between .32 and

.86. This credibility interval does not include zero and consequently the null

hypothesis Mneu,non = 0 is rejected. Furthermore, it can be seen that the

credibility intervals for Mneu,non and Mneg,non for aggression show an overlap,

so the constraint Mneu,non < Mneg,non is not supported by the data. Suppose

we would observe the same results (i.e. posterior means) but with a larger

sample size, the posterior distributions would be more peaked. Hence, the

overlap of the credibility intervals for Mneu,non and Mneg,non will disappear.

Consequently, the fit of the model would increase. In the next section we

elaborate on the relation between model fit on the one hand and effect size,

and sample size on the other hand.

2.6 Bayes Factors versus p-Values

Recall that a Bayes factor provides a direct quantification of support as

evidenced in the data for two competing hypotheses. Most researchers would

agree that 100 times more support seems to be quite a lot and, for example,

1.04 times more support is not that much. However, clear guidelines are not

provided in the literature and we do not provide these either. We refrain

from doing so because we want to avoid creating arbitrary decision rules.

Remember the famous quote about p-values: “[. . .] surely, God loves the .06

nearly as much as the .05” (Rosnow & Rosenthal, 1989, p. 1277).

To gain insight into the interpretation of Bayes factors in comparison

to p-values, consider the following imaginary example. Suppose there are

six means, denoted by M1, . . . ,M6, and that the informative hypothesis of

interest is HD : M1 < M2 < M3 < M4 < M5 < M6. We created data in such
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a way that the sample means and variance correspond exactly to population

values as are shown in the footnote of Table 2.5. Now let us compare:

1. The F-test for traditional frequentist analysis;

2. Planned comparisons for thoughtful frequentist analysis assuming a

linear increase (−2.5×M1 +−1.5×M2 +−.5×M3 + .5×M4 + 1.5×
M5 + 2.5×M6)

3. Bayesian evaluation of informative hypotheses using BFs as described

above for BFD,unc.

We ran these analyses for different populations with a small and medium

effect, a small and large sample size, and with zero, one and two violations

of the ordering; see Table 2.5. Comparison of the resulting p-values with the

Bayes factors will provide insight in the interpretation.

As can be seen in Table 2.5, for some of the data the classical F-test is

not significant, although there are differences between the means within the

population (i.e. population 2, 6, 8). This result indicates a power problem

that is not shared by the planned comparison and the Bayes factor. The

results for the planned comparison indicate that for all populations, apart

from the null population 1, there is a significant linear increase in the six

means even with 1 or 2 violations of the constraints.

Inspection of the Bayes factors indicates that its value is dependent on,

firstly, effect size. Compare for example population 2 with population 4,

with Bayes factors 29 versus 91, respectively. Second, sample size. Compare

for example population 2 with population 3, with Bayes factors 29 versus

470, respectively. Finally, the number of violations. Compare for example

populations 2, 6 and 8 with 0, 1 and 2 violations and with Bayes factors of

29, 20 and 4, respectively. In the latter population there is still support for

the informative hypothesis, but 4 is clearly not a great deal of support in

comparison to the other, much larger, results.

Recall the posterior means presented in Figure 2.1. Suppose the sample

size is increased, then the posterior distributions will become more peaked
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and the overlap between distributions will disappear. Stated otherwise, the

Bayes factor will increase with increasing sample size because an increase in

model fit. The same holds for an increase in effect size, that is, the further

the posterior means are away from each other, the less overlap between

distributions.

What can be learned from this exercise? First, Bayes factors are sensitive

for effect size, the number of violations, and sample size. When comparing

informative hypotheses the complexity of each hypothesis under investigation

is independent of these three concepts, as was shown before. It is the fit of the

model that is influenced by the three concepts, namely the fit of a model will

increase with higher effect sizes, a decrease in the number of violations and

an increase in sample size. Second, in this section we specified only one single

informative hypothesis which we evaluated with Bayes factors and p-values.

It is interesting to note that the Bayes factor tells us exactly how much

better a certain informative hypothesis is against another hypothesis. In

comparison, a p-value tells us the probability, given that the null hypothesis

is true, of observing the same data or more extreme data than those actually

observed. The p-value, however, is often misinterpreted as the probability

that the null hypothesis is true (see, e.g., Balluerka, Gómez & Hidalgo, 2005).

Recall that if we would specify more informative hypotheses it is difficult, or

even impossible, to use p-values as was shown before.

2.7 Conclusion

In the current paper we showed how subjective beliefs influence analyses in

hidden ways and how they might be incorporated explicitly. Researchers

in developmental psychology often have explicit expectations about their

research questions, or as M. D. Lee and Pope (2006) say “In the real-world

much is usually already known about a problem before data are collected

or observed.” As we showed in the current paper, these expectations can

be translated into informative hypotheses. However, as we demonstrated
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with a case study, the average researcher wants to evaluate such informative

hypotheses, but tests a set of null hypotheses. We argued that resear-

chers should not use traditional frequentist analysis, not even thoughtful

frequentist analysis, if they are not interested in the conclusion that the

observed data either are or are not in agreement with the null hypothesis.

Rather researchers should directly evaluate all the informative hypotheses

under investigation without relying on testing the null hypothesis. This can

be done using Bayesian model selection. This way researchers can use all

the knowledge available from previous investigations and can learn more

from their data than traditional null hypotheses testing. All criticisms of

null hypothesis testing aside, the best argument for evaluating informative

hypotheses is probably that, like Orobio De Castro et al. (2003), many

researchers want to evaluate a set of hypotheses formulated with inequality

constraints, but have been unable to do so because the statistical tools were

not yet available. As this paper has illustrated, these tools are available to

any researcher.
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Background Knowledge in Model Selection

Procedures

Van de Schoot, R., Romeijn, J.-W. & Hoijtink, H.

Manuscript under review

Abstract

This paper concerns the interplay between simplicity and model fit in statistical model

selection, particularly the use of background knowledge as expressed in order constraints

between the parameters of interest. Extant model selection procedures do not manage to

accommodate such order constraints. We will present two revised model selection criteria

that are being proposed in statistical literature and then argue that these revised criteria

give rise to a refinement of the notion of model complexity. Rather than taking the number

of parameters as an expression of complexity, we maintain that complexity is captured by

model size.
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While analyzing their data, scientists want to select a simple statistical model

and they want to learn as much as possible from their data. In order to do so,

they often use background knowledge, based on previous research, literature

reviews, and the current academic debate. The background knowledge

is typically translated in a set of candidate models, that each generate

specific statistical hypotheses (see, e.g., Henderson, Goodman, Tenenbaum

& Woodward, 2010). Finally, model selection criteria are used to choose

between these models.

This paper concerns the question of how a specific kind of background

knowledge can be introduced into model selection procedures, namely

inequality constraints between the parameters of interest. Many scientists

have explicit expectations about the ordering between statistical parameters.

Phrases like “The mean outcome in both experimental groups is expected to

be larger than in the control group” and “Women score higher than men in

each condition” can be found in many papers. Evaluating such expectations,

formulated with inequality constraints between the parameters of interest,

is at the very forefront of research in statistics (Anraku, 1999; Hoijtink,

Klugkist & Boelen, 2008; Klugkist et al., 2005; Kuiper & Hoijtink, 2010;

Mulder, Klugkist et al., 2009; Silvapulle & Sen, 2004; Van de Schoot, Hoijtink

& Deković, 2010; Van de Schoot, Hoijtink, Mulder et al., 2010).

There is a small variety of model selection procedures commonly used in

practical applications, most notably Akaike’s Information Criterium (AIC;

Akaike, 1973), and the Bayesian Information Criterium (BIC; Schwarz, 1978).

All model selection tools boil down to a trade-off between model fit and

model complexity, or conversely, model simplicity. The philosophical story

about this trade-off has been told in the literature (Forster & Sober, 1994;

Forster, 2002; Kieseppä, 2001; Sober, 2006, 2002). However, a philosophical

understanding of the interplay between model fit and model complexity in
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relation to the use of inequality constraints is lacking. That project will be

undertaken in the current paper.

The introduction of background knowledge in model selection procedures

provides us with a new challenge. The problem is that we can not tell the

same story about the trade-off between fit and complexity as has been told

in the philosophical literature. First, Forster and Sober argue that model

dimensionality is a expression of model complexity (Forster & Sober, 1994;

Forster, 2002; Sober, 2006, 2002). We argue, however, that this notion

of complexity needs refinement when inequality constraints are specified

between the parameters of interest. In this paper we show that using model

size (i.e. admissible parameter space) rather then model dimensionality

(i.e. the number of parameters in a model) should be used as a measure

of complexity.

Another important philosophical perspective on model selection is propo-

sed by Kieseppä (2001) who described it as a three step procedure: (1) choose

a family of models; (2) choose a statistical model which belongs to a specific

family of models; (3) choose an element of the best statistical model. In this

paper we propose a intermediate step in this procedure: Step (2’), where

a set of statistical models is specified using inequality constraints between

statistical parameters. In the end the model with the best trade-off between

model fit and model size is selected.

The plan of this paper is as follows. After introducing two standard

model selection techniques (AIC, BIC), we show in Section 3.2 why these

selection procedures are equipped to select the best model in Step (2) of

Kieseppä (2001), but are not equipped to select the best model in Step (2’).

In Section 3.3 we elaborate on revisions of the AIC and BIC (i.e. the ORIC

and the prior adapted BIC, respectively) that are able to select the best model

in Step (2’). Finally, in Section 3.4 we show how the notion of simplicity in

model selection procedures can be refined, but first we define in Section 3.1

the aforementioned specific kind of background knowledge.
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3.1 Background Knowledge

There are many kinds of background knowledge that scientist might want

take into account when analyzing their data. In the current paper, we are

going to focus on one particular type of background knowledge: expectations

about the ordering of statistical parameters that researchers might consider.

3.1.1 Practical Example of Background Knowledge

We will illustrate the type of background knowledge at issue with a study

in the field of developmental psychology taken from Jongmans, Smits-

Engelsman and Schoenmaker (2003). The authors investigated differences

in the severity of perceptual motor problems encountered by children with

developmental coordination disorder (DCD) for two different groups, with

and without concomitant learning disabilities (LD). DCD entails the partial

loss of the ability to coordinate and perform certain purposeful movements

and gestures. Children with LD have trouble performing specific types of

skills or completing tasks if left to figure things out by themselves. The

researchers constructed four groups of children and computed the mean for

each group on perceptual motor problems: µ00 pertains to the subgroup of

having neither DCD nor LD; µ10 pertains to the subgroup having LD only;

µ01 pertains to the subgroup having DCD only; and finally µ11 pertains to

the subgroup of having both DCD and LD.

Based on previous research the authors have two different expectations

about the ordering of these four means and this is exactly where background

knowledge is introduced. A first expectation is that children having neither

DCD nor LD have a lower score on perceptual motor dysfunction than

the other three groups. The statistical hypothesis for this expectation is

µ00 < {µ10 , µ01 , µ11}. Another batch of research articles leads to an

additional expectation, namely that children having only one disorder are

better off than children with DCD who also suffer from LD. Suffering from

both disorders would decrease the severity of perceptual motor problems
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more then when suffering from only one disorder. The statistical hypothesis

for this expectation is µ00 < {µ10 , µ01} < µ11.

As can be seen from this example, the background knowledge here

concerns rivalling expectations about the ordering of means. These are ex-

pressed in two different statistical models specified with inequality constraints

among the parameters. Model selection tools can now be used to choose

between the statistical models.

3.1.2 Restricting the Notion of Background Knowledge

In this section we will take a closer look at the notion of background

knowledge used in this paper. First of all, we limit our discussion

about background knowledge exclusively to information about the statistical

parameters. It can consist of two parts: (i) certain parameters may be ruled

out at the outset or equated with another parameter, thereby decreasing the

dimension of the parameter space, or (ii) a specific part of the parameter

space may be ruled out because of the use of inequality constraints. In the

latter case the number of dimensions of the parameter space will typically be

the same, but the range of possible statistical hypotheses is made smaller.

In other words, the size of the parameter space is reduced.

To bring out the salient parts of our arguments, we present a simple

example based on Jongmans et al. (2003) which we will use throughout the

remainder of this paper. Say that we have some data E and that we think

these data are sampled from a distribution characterized by two parameters

of the Jongmans et al. (2003) example, µ01 and µ11 (i.e. the subgroup having

DCD only, and the subgroup of having both DCD and LD). For reasons of

simplicity we will call them µ1 and µ2, respectively. Furthermore assume

that µ1 ∈ [0, 1] and µ2 ∈ [0, 1]. In this case each pair of values for µ1

and µ2 represents a specific statistical hypothesis concerning the data. By

contrast, a statistical model consists of a set of such hypotheses. Such models

sometimes are referred to as composite hypotheses. We can now specify a

set of T different statistical models denoted by Mt(t = 1, . . . , T ).
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Figure 3.1: The squares in this figure represent the parameter space for models M1 and

M2. Say that the square consists of points and that each point represents a combination

of two values, one for µ1 and one for µ2. For M1 all points, or combinations of µ1 and

µ2, are a-priori allowed and as such the admissible parameter space is equal to the total

parameter space. ForM2 some part of the parameter space is a-priori not allowed, which

is graphically displayed by the gray area.

One possible statistical model for the data allows for all possible values of

both parameters; that is, 〈µ1, µ2〉 ∈ [0, 1]2. Call this modelM1. It consists of

the entire range of hypotheses Hµ1µ2 and is referred to as the unconstrained

model. In the left panel of Figure 3.1 a graphical representation is given for

M1. The square represents the parameter space and that each point in that

space represents a combination of two values, one for µ1 and one for µ2. For

M1 all points, or combinations of µ1 and µ2, are a-priori admissible. As

such, the admissible parameter space is equal to the total parameter space.

Now, consider another possible model,M2, which imposes the restriction

that µ2 > µ1. The right panel of Figure 3.1 shows the parameter space of

M2. In contrast with M1, not all combinations of µ1 and µ2 are a-priori

admissible; this is represented by the shaded area in Figure 3.1. The white

area is what we will call the ‘admissible’ parameter space of the range of

hypotheses for Hµ2>µ1 . Stated otherwise, the subgroup of children having

DCD only is expected to have higher scores on the severity of perceptual

motor problems compared to the subgroup of children having both DCD and

LD.
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Models with inequality constraints are nested in the unconstrained model:

M2 ⊆M1. Note that all models are a particular set of statistical hypotheses,

each of which fixes a fully specified distribution for the data. Their difference

is that the last model restricts the possible values for the parameters µ1 and

µ2. Before observing E, the size of the admissible parameter space differs

between the models under investigation: the volume of admissible parameter

space is smaller for M2. After observing E, it could be that E is either

located in that part of the parameter space where both M1 and M2 are

admissible, or that it is located where M1 is admissible but M2 is not.

Model selection procedures are developed to choose among statistical models

after observing E.

3.1.3 Background Knowledge and Model Selection Procedures

Kieseppä (2001) describes a three step procedure for model selection

procedure:

1. Choose between a number of sets of models.

2. Model selection: choose among the chosen set of models, which are

denoted by Ms (s = 1, . . . , S).

3. Estimation: choose an element of the selected model.

He argues that when a reasonable choice has been made in the first step,

statistical model selection techniques can help to make a reasonable choice

in the second step. In the current paper we will not focus on Step (3).

Say that in Step (1) we have chosen a set of models in which four statistical

parameters feature: µ1, . . . , µ4. This set consists of models differing in the

exact parameters included, so that these models differ in dimensionality. In

the second step we now have to choose among those models. For example, we

may have a set of three models {M0 : Hµ1,µ2,µ3,µ4}, {M1 : Hµ1,µ2,µa}, where

µa = µ3 = µ4 and {M2 : Hµa,µb}, where µa = µ3 = µ4 and µb = µ1 = µ2.

Note that these three models differ in model dimensionality, that is, the
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number of parameters differ between the models. Model selection tools can

choose between these models using a trade-off between model fit and model

complexity, as further described in Section 3.2.

In Step (2) the models may differ in dimensionality, but returning to

our example shown in Figure 3.1 there is no difference in the number of

dimensions between the models under investigation. Also in the example

of Jongmans et al. (2003) the two statistical models do not differ in

dimensionality. Therefore, in this paper we propose another step in the

model selection procedure of Kieseppä (2001), called Step (2’). In this new

step, a set of models is specified that differ in the inequality constraints

formulated between the parameters of interest. In this way, the models under

investigation at Step (2) may differ in dimensionality and at Step (2’) they

may differ in admissible parameter space. Note that both dimensionality

and specifying inequality constraints reduces the admissible parameter space

volume. This implies that for model selection procedures in both Step (2)

and Step (2’) we are selecting on the basis of the size of the parameter space.

However, in Step (2’) the notion of size includes the size restrictions following

inequality constraints between statistical parameters. As we show in the

remainder of this paper, standard model selection procedures are equipped

to select the best model in Step (2), but they are not equipped to select the

best model in Step (2’).
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3.2 What Goes Wrong?

In the previous sections it has become apparent that background knowledge

can be expressed in a set of relevant statistical models that differ in the size

of the parameter space, either by changing the dimensionality of a model,

or by restricting the parameter space using inequality constraints. In this

section we inspect the bahaviour of two classical model selection criteria for

both situations.

A number of so-called information criteria (ICs) is available, most notably

Akaike’s IC, or AIC, (Akaike, 1973, 1981), and the Bayesian IC, or BIC,

(Schwarz, 1978). These ICs optimize entirely different things (see Appendix

A for a technical introduction): AIC minimizes the expected Kullback-Leibler

divergence to the true distribution; and BIC is focused on maximizing the

marginal likelihood of the model. So, both criteria are designed to pursue an

entirely different goal. Also, each IC is derived from a different starting point

(the Kullback-Leibler divergence for the AIC, and the marginal likelihood for

the BIC). But, interestingly enough, the result always consist of two parts,

ICt = −2 log f(y|θ̂t) + λt , (3.1)

where the subscript t refers to model Mt(t = 1, . . . , T ), f(y|θ̂t) denotes the

likelihood of the model parameters of the data y evaluated at the maximum

likelihood estimate of θ̂t. The parameter λt differs across the IC’s (see

Appendix A for more details):

• λt = 2d for the AICt,

• λt = d log(n) for the BICt,

where n is the sample size, and d is the number of parameters in the

model. Both expressions somehow include the number of parameters in the

model; we use the number of parameters and the dimensionality of the model

interchangeably.
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It is interesting to note that λ in Equation (3.1) is primarily an expression

for the asymptotic bias in the log-likelihood as an estimate for the target

function, and not, as is stated in many articles, deliberately put in the formula

as an expression of simplicity (see e.g., Burnham & Anderson, 2004). The

strength of the ICs lies in the fact that the appearance of dimensionality

is a result of the derivation. The interpretation of the Λ term as being a

measure for simplicity arises only post-hoc. The result, however, is intuitively

meaningful: the likelihood of the best fitting hypothesis within the model is

a measure of model fit, and the number of parameters of the model is a

measure of complexity. The greater the number of dimensions, the greater

the compensation for model complexity becomes. So, adding a parameter

should be accompanied by an increase in model fit to accommodate for the

increase in complexity.

Reconsider the example of Section 3.1.2 where the number of dimensions

is the same for M1 and M2. The second term on the right hand side of

Equation (3.1) will not make the difference between both models. Now

suppose the maximum of the likelihood is completely located in the lower

triangle of Figure 3.1, consequently the constraints ofM2 are not supported

by the data. In this situation the first term on the right hand side of Equation

(3.1) will be higher for M2 than for M1 and the model selection procedure

is able to distinguish both models.

But now consider the situation that the maximum of the likelihood is

completely located in the upper triangle of Figure 3.1. In this situation both

terms on the right hand side of Equation (3.1) will be the same for M1 and

M2. In this latter situation neither AIC, nor BIC can distinguish M1 from

M2 because AIC1 = AIC2 and BIC1 = BIC2. This result is counterintuitive

and unwanted because M2 is clearly more restricted than M1 in virtue of

the inequality constraint. So, a model selection procedure should select M2

as the best model if there is no difference in the maximum of the likelihood,

or conversely model fit. Unfortunately, neither of the elements in Equation
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Equation (3.1) manages to accommodate background knowledge as expressed

in inequality constraints between the parameters of interest.

To sum up, classical ICs are equipped to choose between a number of

different statistical models if the model fit differs between models, or if the

dimensionality differs (Step (2) of Kieseppä, 2001). However, if we want the

ICs to bring out the differences between statistical models in Step (2’), we

need to revise the classical ICs and this is what we do in the next section.

3.3 Model Selection Criteria Revised

In this section we introduce a revision for subsequently the AIC and BIC:

the order restricted IC, or ORIC (Anraku, 1999), and the prior adjusted BIC

(Romeijn, Van de Schoot & Hoijtink, 2010). In Appendix B more details are

provided about these revised ICs. The revision of the AIC is only described

for a certain class of statistical models, namely analysis of variance models

(ANOVA)

yi =
J∑
j=1

µjdij + εi, (3.2)

where yi is the observation of the dependent variable of person i (i =

1, . . . , N), µj is the mean of group j (j = 1, . . . , J), and dij denotes the

group membership of a person, with 0 denoting not being a member of the

group and 1 denoting being a member of the group. The residuals, εi, for each

group are assumed to be normally distributed with mean zero and variance

σ2.

Using θ = {µ, σ2} for ANOVA models the likelihood is given by

f(y|µ, σ2) =
N∏
i=1

1√
2πσ2

exp

{
(yi −

∑J
j=1 µjdij)

2

2σ2

}
. (3.3)

Concerning the revised ICs, it is important to realize that the ORIC and the

prior adjusted BIC are not post hoc solutions. In fact, these alternative model

selection criteria are developed from the same starting points as the original
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criteria: the Kullback-Leibler divergence for the ORIC, and the marginal

likelihood for the prior adjusted BIC. At some point the derivations of these

revised ICs have been altered to account for inequality constraints between

the parameters (see Appendix B for more details) and interestingly enough,

the results are quite intuitive. While both revised IC is derived from a

different starting point, again the result always consists of two parts,

ICt = −2 log f(y|θ̂t) + λt , (3.4)

where f(y|θ̂t) denotes the likelihood of the data y evaluated at the maximum

likelihood estimates of the model parameters, denoted θ̂t, and λt is the

estimated bias for the maximized log-likelihood value. The last term of

equation Equation (3.4) again differs across the IC’s:

• λt = 1 +
∑qm

l=1 LPl · l, for the ORIC, where qm is the number of distinct

mean values (l = 1, . . . , qm) and LP is a level probability (see Appendix

B.1 for a more detailed description) and ’1’ refers to the unknown

variance term;

• λt = d log(n) − 2 log ht(θ̂), for the prior adapted BIC, where ht(θ̂) is

the prior evaluated at the maximum likelihood estimates (see Appendix

B.2 for a more detailed description). Note that h1(θ̂) = 1 for the

unconstrained model and ht(θ̂) = ct×h1(θ̂) for model t as we will show

below in Equations (3.5) and (3.6).

In their own way both λ-terms express the size of the admissible parameter

space, because each can incorporate the inequality constraints that might be

imposed on the parameters. Let us elaborate on both revised ICs and their

behaviour in Step (2’) of Section 3.1.3.

First, the literature contains one modification of Akaikes information

criterion that can be used in the context of inequality constrained analysis

of variance models with equal group sizes. It is called the order restricted

information criterion, or ORIC (Anraku, 1999). It can be used for the

evaluation of models differing in the order restrictions among a set of
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means. Inequality constraints are taken into account in the estimation of

the likelihood and in the penalty term of the ORIC.

Anraku (1999) showed that the number of parameters in an order

restricted model can be expressed as a function of the level probabilities

that are used when testing an inequality constraints hypothesis. A level

probability is the probability that that the order restricted maximum

likelihood estimator of the means for the hypothesis at hand consists of l

distinct value given that for each group the data come from a distribution

with the same mean and variance. Computation of level probabilities can

be done via simulation, see pp. 78-81, Silvapulle and Sen (2004), see

also Kuiper and Hoijtink (2010), or Kuiper et al. (2010) for software. In

short, for inequality constrained hypotheses the penalty term of the ORIC

can computed by replicating data sets from a population where for each

group the data comes from a distribution with the same mean and variance.

The penalty term is then easily computed by estimating the percentage

of replicated data sets that satisfy the constraints of the model under

investigation, see Appendix B.1 for more details and a description how to

compute the ORIC for our simple example.

Secondly, as indicated in Section A, the BIC is an approximation of

the marginal likelihood of the model. Since the BIC is a Bayesian model

selection procedure, a prior density over the statistical hypotheses in the

model naturally shows up in the derivation. In the derivation of the ordinary

BIC, it is shown that the influence of that prior is relatively small, and for

increasing data sets becomes negligent. In the derivation of the prior adjusted

BIC (Romeijn et al., 2010), however, the influence of the priors is retained,

and factored into the term expressing the simplicity of the model. The prior

distribution used is the encompassing prior approach, further explored in

Klugkist et al. (2005) in combination with a uniform prior distribution.

In short, the method employs an encompassing prior, ht(θ̂) for the model

parameters θ and is specified for the unconstrained model, for our example

M1 in Figure 3.1.
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Then, the prior distribution of each nested model, Mt (t = 2, . . . , T ),

can be derived from the prior of the unconstrained model, h1(θ̂). If h1(θ̂)

is defined for the total parameter space, then the prior distribution for a

constrained model, ht(θ̂), is then proportional to h1(θ̂) and zero elsewhere:

ht(θ̂) :

{
c−1
t h1(θ̂) if θ̂ ∈Mt

0 otherwise ,
(3.5)

where ct is a normalization constant given by

ct =

∫
µ

∈Mth1(θ̂)dθ . (3.6)

If h1(θ) is chosen constant, for example h1(θ) = 1, in that case the prior

adjusted BIC is able to distinguish inequality constrained hypotheses.

Consider the example of Section 3.1.2, where the number of dimensions

is the same forM1 andM2. Whenever the first term on the right hand side

of Equation (3.4) is equal forM1 andM2 it should be ht(θ̂) that makes the

difference between both models. Because of the truncated prior distribution,

as is argued in Romeijn et al. (2010), h(θ̂) is the same as the inverse of the

volume of the model under investigation.

For our example h1(θ̂) = 1 and ct = .5, since only halve of the parameter

space is admissible, then because of Equation (3.5) h2(θ̂) = 2. Consequently,

for the situation that the first term on the right hand side of Equation 3.4

does not differ between M1 and M2, prior adapted BIC2 < prior adapted

BIC1 and the prior adapted BIC will select M2 as the best model.

Note that, again, these revisions are not adjustments of equation Equation

(3.1) to account for inequality constraints, but that they are derived from

scratch. The result is surprisingly intuitive: the parameter space volume

shows up as part of the selection criteria. In the next section we argue that

the adjustments of the model selection criteria are refinements of the post-hoc

interpretation of simplicity.
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3.4 Refinement of the Notion of Simplicity

What have we learned so far? Scientists have expectations in the form of

(i) the number of parameters and (ii) inequality constraints between the

parameters. Classical ICs (i.e., AIC and BIC) can select among models

when they differ in fit or dimensionality, but not when the only difference

is in the volume of the admissible parameter space as affected by inequality

constraints between the parameters of interest. We saw that the revised ICs

(ORIC, and prior adjusted BIC) do not suffer from this problem. We have

also seen that classical ICs are a combination between the fit and complexity.

The likelihood of the best fitting hypothesis within the model is considered

as a measure of model fit, and the dimensionality of a model is considered

as a measure of complexity. Finally, we saw that revised IC’s include each in

their own way the size of the model.

Forster and Sober, among many others, build a good case for interpreting

the dimensionality, appearing in the classical ICs, as a measure for complexity

(Forster, 2002; Sober, 2006). In this section we argue that for the very same

reasons the λ-terms from equation Equation (3.4) of the revised ICs can be

interpreted as a measure for complexity as well. In what follows, we draw a

parallel between dimensionality and complexity on the one hand and model

size and complexity on the other, so that the derivations of the revised ICs

provide us with a refined notion of complexity.

To motivate this parallel, we need to elaborate on the exact relation

between simplicity and the number of parameters. To do so, consider model

selection from the falsificationist perspective of Popper (1963). A model that

deems fewer possibilities admissible is easier to falsify and if such a model

is supported by the data it should be rewarded for its risky prediction. As

Popper wrote, “Confirmations should count only if they are the result of

risky predictions; that is to say, if, unenlightened by the theory in question,

we should have expected an event which was incompatible with the theory

an event which would have refuted the theory” (ibid., pp. 33-39). Thus, the
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more possibilities a researcher is willing to rule out, the more attractive a

model becomes.

Model selection procedures connect this idea of ruling out possibilities

with the notion of simplicity. They favor models that allow for fewer

possibilities, and call such models simpler. Relating this to the AIC and

BIC, where complexity is measured as the dimensionality of the model- see λ

in equation Equation (3.1)- the more dimensions are ‘shaved’ away using the

principle of Ockham’s razor,3 the simpler the model becomes. The question

now is whether the same holds for the revised ICs. That is, can we interpret

λ in equation Equation (3.4) as a measure for complexity as well?

In Section 3.1 we showed that researchers do not only specify the number

of parameters in their statistical models, but that they also use inequality

constraints between the statistical parameters. As indicated, there is a

natural relation between cutting down the number of parameters and ruling

out possibilities. But there is also such a natural relation between introducing

inequality constraints and ruling out possibilities. When specifying such

constraints, a researcher also rules out possibilities and hence ’shaves’ away

parameter space volume. Compare, for example, the models in Figure 3.1,

which differ in admissible parameter space but not in model dimensionality.

Here the parameter space is not restricted by the number of parameters, but

by inequality constraints between the parameters of interest.

Returning to Popper and his “risky predictions”, adding more constraints

to a model leads to more risky models. Looking again at the three models in

Figure 3.1, we can easily see that a researcher who specifies the model {M2 :

3

In the 14th-century the logician William of Ockham formulated a principle later referred

to as Ockham’s razor and is often summarized as follows ”entities should not be multiplied

beyond necessity”. This quote, however, is (so far) not found in his writings. What has

been found is: “a plurality should not be assumed without necessity, as has often been

said” (Derkse, 1993). In other words, any model should make as few assumptions as

possible. The interpretation is often formulated like “all things being equal, the simplest

solution tends to be the best one”.
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Hµ2>µ1} takes more risks than a researcher who specifies an unconstrained

model {M1 : Hµ1,µ2} since less parameter space is admissible. Recall that in

the falsificationist perspective, the ICs select those models that have a good

fit and at the same time give off riskier predictions, and that this quality of

generating risky predictions was associated with the complexity of the model.

We have seen that risky predictions are associated with model size, both in

terms of number of dimensions and in terms of admissible parameter space

volume, and we have also seen that the revised ICs select models on the basis

of both dimensionality and this admissible volume. Our suggestion is that we

can therefore interpret both dimensionality and admissible parameter space

volume as components of model complexity.

In sum, our proposal is to refine the notion of complexity along the

foregoing lines. It is not the dimensionality of a model that determines

the simplicity of a model, but it is parameter space volume, which is a

combination of model dimensionality and the volume of the admissible

parameter space. In our exposition the latter is a result of inequality

constraints between the parameters of interest. The revised model selection

criteria, each in their own way, give expression to this new notion of

complexity. Moreover, just like for the original ICs, these expression of

complexity are not put in by hand, but drop out of the independently

motivated derivations.

3.5 Conclusion

In this paper we discussed the role of a particular kind of background

knowledge in statistical model selection. We showed that when models

only differ in volume of admissible parameters space expressed by inequality

constraints, classical model selection criteria (AIC, and BIC) fail to choose

between these models. Drawing on recent developments in statistics, we

presented revisions of these classical criteria that manage to cope with such

constraints: the order restricted information criterium, or ORIC (Anraku,
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1999), and the prior adjusted BIC (Romeijn et al., 2010). Finally, we

argued that these revisions provide us with a refined notion of model

complexity. This is good news for scientists because it provides them with

an interpretation of the new model selection tools, and it is good news for

philosophers because, we claim, they are given a more nuanced view of what

the complexity of a model amounts to.

APPENDICES

A Two Often Used Model Selection Criteria

In this appendix we provide a short technical introduction to AIC (Akaike,

1973), and BIC (Schwarz, 1978). For a detailed comparison between the two

ICs, we refer to Hamaker, van Hattum, Kuiper and Hoijtink (2009).

A.1 AIC

The AIC (Akaike, 1973, 1981) is an information-theoretic model selection

method based on the Kullback-Leibler (K-L) distance (Kullback & Leibler,

1951). The K-L distance quantifies the discrepancy between two probability

distributions. Note that by ‘distance’ we mean divergence and not a simple

Euclidean distance. For one, the ‘distance’ relation between two points is

not symmetric.

Let f(·|θ∗) be the true model with a probability distribution over the

sample space. Furthermore, let f(·|θ) denote an approximating model which

is a probability distribution. Note that both f(·|θ∗) and f(·|θ) are probability

distributions, but the main difference is that while f(·|θ∗) is infinitely

complex with an infinite number of parameters, f(·|θ) is characterized by a

finite set of parameters θ. The K-L distance is then the amount of information

lost when f(·|θ) is used to approximate f(·|θ∗), denoted by δ(θ∗; θ):

δ(θ∗; θ) = Ef(y|θ∗)

[
log f(y | θ∗)− log f(y | θ)

]
, (3.7)
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where y is observed data.

The criterion is that this K-L distance needs to be minimized in order

to obtain a model selection criterion. To do so Akaike (1973) considered the

data generating mechanism to be fixed, and only f(·|θ) varies over a space of

models, making the K-L information criterion equivalent to maximizing the

second term on the right hand side of (3.7). The K-L information criterion

cannot be used directly in model selection because it requires knowledge of

the true parameter values, θ∗, and clearly we do not have such knowledge.

Using a hypothetical cross-validation data set x, which, just like the observed

data set y, arises from f(·|θ∗), Akaike (1973) found that the maximized log-

likelihood value is a biased estimate of the expected estimated relative K-L

distance:

Ef(x|θ∗)

[
Ef(y|θ∗)

{
log f(x | θ̂y)

}]
≈ log f(y | θ̂y)− 2d , (3.8)

where θ̂y is the expected maximum log likelihood estimate of the observed

data set and where the bias term d is approximately equal to the number

of estimable parameters in the approximating model. The expression on the

right hand side of Equation (3.8) is called the AIC. The smaller the numerical

expression of the AIC the more attractive the model under investigation

becomes.

The AIC, namely log f(y | θ̂y)−2d, can be considered as an approximately

unbiased estimator of the K-L distance for large samples. The interpretation

of the AIC is, among a finite set of models being compared that the model

satisfying the lowest AIC value is expected to result in the minimum loss of

information if this model were fitted to a future sample of observations from

the same underlying data generating mechanism.

A.2 BIC

The Bayesian information criterion (BIC), or Schwarz Criterion (Schwarz,

1978) is a criterion for model selection among a class of parametric models

based on a Bayesian model selection approach. In short, Bayes’ method says



50 CHAPTER 3. BACKGROUND KNOWLEDGE IN MODEL SELECTION PROCEDURES

that statistical models should be compared by their posterior probabilities.

That is, we should choose the model Mt (t = 1, . . . , T ), which has the largest

posterior model probability given the observed data y. The posterior model

probability for model Mt is given by

p(Mt|y) =
f(y|Mt)p(Mt)∑K
i=1 fi(y|Mt)p(Mi)

, (3.9)

where k is a model index (with k = 1, . . . , Ki), f(y|Mt) is the marginal

model probability of data y for model Mt, and p(Mt) is the prior probability

for model Mt. Schwarz (1978) assumed that the prior probabilities of all

models are equal and that there is a flat, uniform prior distribution over

parameter values in each model containing the same amount of information

as one single observation (Raftery, 1995). Then finding the model with the

largest posterior probability is the same as choosing the model with the

largest marginal model probability. He showed that

−2 log f(y|Mt) ≈ −2logf(y|θ̂y) + d log(n) , (3.10)

where θ̂y is the maximum likelihood estimator, and d is the dimensionality

of the model.

The expression on the right hand side of Equation (3.13) is called

the BIC. Again, the smaller the numerical expression of the BIC the

more attractive the model under investigation becomes. The BIC, namely

−2logf(y|θ̂y) + d log(n), can be considered an approximately unbiased

estimator of the marginal likelihood for large samples and a specific prior

distribution. Raftery (1995) indicates that the BIC may be viewed as a

predictive score and can be used for making out-of-sample predictions, i.e.

inferences to observations from different populations.
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B Revised Model Selection Criteria

In this appendix we provide a short technical introduction to the ORIC

(Anraku, 1999), and the prior adjusted BIC (Romeijn et al., 2010).

B.1 Revision of AIC

The literature contains one modification of Akaike’s information criterion

that can be used in the context of inequality constrained ANOVA models.

It is called the order restricted information criterion (ORIC), see Anraku

(1999); see also Kuiper and Hoijtink (2010). The ORIC can be used for the

evaluation of models differing in the order restrictions among a set of means.

Like other information criteria, the ORIC is based on the likelihood and

a penalty term, equal to

ORIC = −2 log f(y|θ̂) + 2
[
1 +

qm∑
l=1

LP · l
]
, (3.11)

where the term between square brackets denotes the penalty term for the

constrained means where the ’1’ refers to the unknown variance term in

ANOVA models. Furthermore, qm is the number of distinct mean values

(l = 1, . . . , qm), and LP is a level probability, explained below. In the

AIC, the maximum likelihood estimators of θ̂ are the values that maximize

the log likelihood for the statistical model under investigation (Burnham &

Anderson, 1998), but in the ORIC the order-restricted maximum likelihood

estimator for the means must be found.

Anraku (1999) showed that the number of parameters in an order

restricted model can be expressed as a function of the level probabilities

that are used when testing an inequality constrained hypothesis. A level

probability is the probability that that the order restricted maximum

likelihood estimator of the means for the hypothesis at hand consists of l

distinct value given that for each group the data come from a distribution

with the same mean and variance.
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Consider the example of Section 3.1.2, where the number of dimensions

is the same for M1 and M2 and suppose the maximum of the likelihood

is completely located in the upper triangle of Figure 3.1, then it should be

the penalty term which differentiates M1 from M2. With no inequality

constraints imposed on the means the ORIC is equal to the AIC, so for

M1 the number of parameters is equal to 2 (plus 1 because of the unknown

variance term). For inequality constrained hypotheses the penalty term of

the ORIC can computed by replicating data sets from a population where

for each group the data comes from a distribution with the same mean and

variance (see Appendix B.1). For our example, a number of data sets are

generated with µ = µ1 = µ2 and σ2 = σ2
1 = σ2

2. For each data set the mean for

both groups is then computed (x̄1, x̄2). Now forM2, qm is equal to 2, because

there are two levels: (1) x̄2 < x̄1 ⇒ µ1 = µ2, and (2) x̄2 > x̄1 ⇒ µ2 > µ1.

The level probability (LP ) is then computed by estimating the percentage

of replicated sample means that satisfy the constraints of the model under

investigation for each level qm, in our example LP1 = P (x̄2 < x̄1) = .5 and

LP2 = P (x̄2 > x̄1) = .5. Now, λ1 = 2 and λ2 = .5 · 1 + .5 · 2 = 1.5 (both

plus 1 for λ1 and λ2 because of the unknown variance term). Consequently,

for the situation that the first term on the right hand side of Equation (3.4)

does not differ between M1 and M2, ORIC2 < ORIC1 and the ORIC will

choose M2 as the best model.

In general, for inequality constrained hypotheses the penalty term of the

ORIC can computed by replicating data sets from a population where for

each group the data comes from a distribution with the same mean and

variance. The penalty term is then easily computed by estimating the

percentage of replicated data sets that satisfy the constraints of the model

under investigation. Computation of level probabilities can be done via

simulation, see pp. 78-81, Silvapulle and Sen (2004), see also Kuiper and

Hoijtink (2010), or Kuiper et al. (2010) for software.
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B.2 Revision of BIC

The derivation of the prior adapted BIC runs along the same lines as the

derivation of the original BIC by Schwarz (1978) (see also, Raftery, 1995):

the BIC of a model Mt is an approximation of the marginal probability of

the data y given model Mt, see Equation (3.9). In the derivation it is shown

that

log f(y|Mt) ≈ log f(y|θ̂y)− (d/2) log(n)

+ log h(θ̂) + (d/2) log(2π)− 1

2
log |i|, (3.12)

where h(θ̂) is the prior probability density at θ̂y, which is the maximum

likelihood estimate given the data y. The parameters θ̂y is the maximum

likelihood estimate of the model given the data y. Furthermore, d is the

number of parameters in the model, n is the sample size, and |i| denotes the

expected Fisher information matrix for one observation.

Now, the first term on the right hand side of (3.12) is of order O(n), the

second term on the right hand side of (3.12) is of order O(log n), while the

last three terms in (3.12) are of order O(1) or less if n→∞. Removing the

terms with order O(1) or less and multiplying with −2 gives the BIC

−2 log f(y|Mt) ≈ −2 log f(y|θ̂y) + d log(n) , (3.13)

The terms of order O(1) or less can be considered as an error of the estimation

of log f(y|Mt), but arguably, they can be ignored because the first two terms

will dominate the equation as n tends to infinity. Moreover, it was shown by

Raftery (1995) that the error is much smaller for a reasonable choice of the

prior distribution, namely a normal mean with θ̂ and variance matrix i−1.

So far for the BIC, let us focus on inequality constrained models; see

Romeijn et al. (2010). There are roughly three cases when comparing an

inequality constrained models: (1) the models may differ in dimensionality;

(2) they may differ in maximum likelihood; or (3) they merely differ in the
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volume of admissible parameter space thereby implying that they neither

differ in dimensionality nor in maximum likelihood. In the first two of these

cases the prior adapted BIC boils down to the original BIC. For the last case,

it can be shown that none of the terms in Equation (3.12) differ when we

compare such inequality constrained models, except for h(θ̂). Even if it is

only of O(1), it makes the difference between the models under investigation

and h(θ̂) should therefore be left in the equation. Ignoring terms of this order

is unwanted.

Instead, we must include the term pertaining to the prior probability

density over the model in the BIC, thus creating the prior adapted BIC:

−2 log f(y|Mt) ≈ −2 log f(y|θ̂y) + d log(n)− 2 log ht(θ̂) . (3.14)

Restricting ourselves to a uniform prior probability density over the models,

and fixing the volume M1 to 1, we obtain that h1(θ̂) = 1. In that case ht(θ̂)

can be interpreted as the inverse of the volume of the model Mk, as argued

in Romeijn et al. (2010). Whenever the first two terms in the equation are

equal for the models of interest, the third term in prior adapted BIC makes

the difference.



PARTII
Statistics





4
Psychological Functioning, Personality and

Support from Family: An Introduction to

Bayesian Model Selection

Van de Schoot, R., Hoijtink, H., Mulder, J., Van Aken, M.,

Dubas, J.S., Orobio de Castro, B., Meeus, W. & Romeijn,

J.-W.

Manuscript under review

Abstract

Most researchers have specific expectations concerning their research questions. These may

be derived from theory, empirical evidence, or both. Yet despite these expectations, most

investigators still use null hypothesis testing to evaluate their data, that is, when analyzing

their data they ignore the expectations they have. In the present article, Bayesian model

selection is presented as a means to evaluate the expectations researchers have, that is, to

evaluate so called informative hypotheses. Although the methodology to do this has been

described in previous articles, these are rather technical and have mainly been published

in statistical journals. The main objective of the present article is to provide a basic

introduction to the evaluation of informative hypotheses using Bayesian model selection.

Moreover, what is new in comparison to previous publications on this topic is that we

provide guidelines on how to interpret the results. Bayesian evaluation of informative

hypotheses is illustrated using an example concerning psychosocial functioning and the

interplay between personality and support from family.
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Statistical hypothesis evaluation has moved beyond simply testing the

traditional null hypothesis: ’nothing is going on’. New developments

allow researchers to learn more from their data than merely that the null

hypothesis is rejected. In this paper we will introduce one such development:

the evaluation of informative hypotheses using Bayesian model selection

(Hoijtink, 1998, 2000, 2001; Hoijtink, Klugkist & Boelen, 2008; Klugkist

& Hoijtink, 2007; Klugkist et al., 2005; Kuiper et al., 2010; Laudy, Boom &

Hoijtink, 2005; Laudy & Hoijtink, 2007; Mulder, Hoijtink & Klugkist, 2009;

Mulder, Klugkist et al., 2009)

In practice, researchers have specific expectations about their research

questions which may be derived from theory, empirical evidence, or both. For

example, suppose that most previous studies find that resilient adolescents

(R) score lower on internalizing problems than under-controlled adolescents

(U) who, in turn, score lower on internalizing problems than over-controlled

adolescents (O): H1 : R < U < O. Suppose that a new article reports the

opposite result: H2 : O < U < R. Hypotheses such as H1 and H2 will be

called informative hypotheses because they contain information about the

ordering of the means. After obtaining new data, the research question for

this example could be: Which of both informative hypotheses receives more

support from the data?

Bayesian model selection can be used to provide an answer to this

question. The result might be that there is 40 times more support in the

data for H1 than for H2. As a consequence we not only have a direct answer

to our research question, but we also have an indication of how much better

one hypothesis is, compared with another hypothesis.

Note that neither H1, nor H2 resemble the traditional null hypothesis

(nothing is going on, H0 : O = U = R), nor the traditional alternative

hypothesis (something is going on, but it is not specified what). We argue

that many researchers are not particularly interested in these traditional
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hypotheses (Cohen, 1990, 1994; M. D. Lee & Pope, 2006; M. D. Lee &

Wagenmakers, 2005; Trafimow, 2003). It may already be known from

previous research that the means are not equal, so why not use this

information? Furthermore, rejecting the null hypothesis does not imply that

either H1 : R < U < O or H2 : O < U < R is going on. For a more detailed

comparison of traditional null hypotheses testing and Bayesian evaluation of

informative hypotheses we refer to Hoijtink, Huntjes, Reijntjes, Kuiper and

Boelen (2008); Hoijtink and Klugkist (2007); or Kuiper and Hoijtink (2010).

Recent developments in statistics, rendered tools that enable the direct

evaluation of predetermined informative hypotheses. Although applied

articles are emerging in the field of the social sciences (Kammers et al.,

2009; Laudy, Zoccolillo et al., 2005; Meeus, Van de Schoot, Keijsers et al.,

2010; Van de Schoot et al., 2009; Van de Schoot & Wong, 2010; Van Well

et al., 2009), an easy-to-read introduction to the evaluation of informative

hypotheses and general guidelines on how to interpret the results are still

lacking. The purpose of the current paper is therefore (i) to present an

introduction to the evaluation of informative hypotheses using Bayesian

model selection, and (ii) to provide guidelines on how to interpret the

results. The methodology is illustrated using two examples: a simple example

to introduce the components of Bayesian model selection and an example

evaluating whether psychosocial functioning is the result of the interplay

between personality and support from family (Van Aken & Dubas, 2004).

Before introducing the methodology, let us first elaborate on what exactly is

meant by an informative hypothesis.

4.1 What are Informative Hypotheses?

Informative hypotheses contain information about the ordering of means, re-

gression coefficients or any other statistical parameter and can be constructed

using the following constraints:
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1. Larger than, denoted by ′ >′ ;

2. Smaller than, denoted by ′ <′ ;

3. Equal to, denoted by ′ =′ .

Such expectations about the ordering of parameters can stem from previous

studies, a literature review or even academic debate. If no information is

available about the ordering of two parameters, they are separated by comma.

An informative hypothesis can consist of combinations of constraints among,

for example, a set of means (note that a mean will be denoted by the symbol

µ). An example is the hypothesis H1 : {µ1, µ2} < µ3 = µ4, where group 1

and 2 are both expected to have smaller mean scores than group 3 and 4.

Also, group 1 and 2 are not, but group 3 and 4 are restricted to have the

same value. (In)equality constraints can also be used between (combinations

of) means and a threshold, for example, H2 : µ1 − µ2 > .20;µ3 − µ4 < .50,

where the difference between the means of group 1 and 2 is expected to be

larger than .20 and where the difference between group 3 and 4 is expected to

be smaller then .50. If no constraints are imposed on any of the means, and

any ordering is equally likely, the unconstrained hypothesis H3 : µ1, µ2, µ3, µ4

is obtained.

The major advantage of evaluating a set of informative hypotheses is

that prior information can be incorporated into an analysis. As argued by

Howard et al. (2000), replication is an indispensable tool in the social sciences.

Evaluating informative hypotheses fits within this framework because results

from different research papers can be translated into different informative

hypotheses. The method of Bayesian model selection can provide each

informative hypothesis with the degree of support supplied by the data. As

a result, the plausibility of previous findings can be evaluated in relation to

new data, which makes the method described in this paper an interesting

tool for replication of research results.



4.2. BAYESIAN STATISTICS 61

4.2 Bayesian Statistics

An important contribution Bayesian statistics can make to the social sciences

is the evaluation of informative hypotheses using Bayesian model selection

(for an introduction see Hoijtink, Klugkist & Boelen, 2008, and for a general

introduction to Bayesian statistics see S. Lynch, 2007. It has proved to be a

flexible tool that can deal with many types of constraints. Gelfand, Smith

and Lee (1992) first showed how inequality constraints can be accounted

for using Markov chain Monte Carlo methods (see also Hoijtink, 2000). By

now, many researchers showed that this same approach also works in more

complicated models. In this paper we show how to analyze informative

hypotheses using a MANOVA as described in Mulder, Klugkist et al. (2009)

(see also Mulder, Hoijtink & Klugkist, 2009). There is software corresponding

to these papers that can deal with many types of (in)equality constraints

in multivariate linear models: (M)AN(C)OVA, regression analysis, repeated

measure analyses with time-varying and time-invariant covariates. Software

is also available for ANCOVA (Klugkist et al., 2005); latent class analyses

(Laudy, Boom & Hoijtink, 2005; Hoijtink, 1998, 2001) and order restricted

contingency tables (Laudy & Hoijtink, 2007). A first attempt can best

be made using the software programme ’confirmatory ANOVA’ (Kuiper &

Hoijtink, 2010) (see also Kuiper et al., 2010). Readers interested in the

software can visit www.fss.uu.nl/ms/informativehypothesis.

What follows is a general description of the methodology used. We do

not provide a full explanation of the analyses. Instead, references to more

technical papers are provided for interested readers throughout this section.

4.2.1 Simple Example

To understand the methodology, consider the following simple example based

on the data of Van Aken and Dubas (2004). Suppose the research question

is whether the mean score on externalizing behavioural problems differs for

over- (denoted by µO; n = 158) and under-controlled adolescents (denoted by
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µU ; n = 207). Furthermore, suppose the first hypothesis (HA) postulates that

there is no restriction between the means (that is, any combination of means

is admissible). The second hypothesis (HB) postulates that the externalizing

behavioural problems of both groups are equal. The third hypothesis

(HC) postulates that over-controlled adolescents score lower on externalizing

problem behaviour than under-controlled adolescents. Formally, the three

hypotheses in this simple example are:

HA : µO , µU ;

HB : µO = µU ; (4.1)

HC : µO < µU .

Of course, these hypotheses can be evaluated using classical null hypo-

thesis testing, or one-sided hypothesis testing. However, when there are

more groups, more variables, or more constraints, null hypothesis testing is

not the appropriate tool for evaluating which hypothesis (HA, HB, or HC)

receives most support from the data. To evaluate the set of hypotheses with

Bayesian model selection, four components are needed that will be explained

successively:

1. ‘Admissible parameter space’, or the expectations of the researcher;

2. The ‘likelihood’ of specific values of the parameters, representing the

information in the data set with respect to µO and µU ;

3. The ‘marginal likelihood’, which represents the support from the data

for each hypothesis, combining model fit and model size;

4. This latter component is converted into the Bayes factor which is the

model selection criteria.

4.2.2 Admissible Parameter Space

The first component is something we call the ’admissible parameter space’

which results from the (in)equality constraints imposed on the means (see,



4.2. BAYESIAN STATISTICS 63

Figure 4.1: Admissible parameter space

e.g. Halpern, 2003, p. 12), for a philosophical introduction to parameter

space, logical space, etc.). Let the squares in Figure 4.1 represent the total

parameter space for all possible combinations of µO and µU in the population.

The boundaries are determined by the scale of the variable, in this case the

mean score on externalizing behavioural problems range between 1 trough 3

(mean = 1.56, SD = 0.37).

Now, let the admissible parameter space be the total of all possible

combinations of µO and µU that satisfy the restrictions of each of the

hypotheses (i.e. HA, HB, HC). For HA, every combination of µO and µU is

permitted, and therefore, the admissible parameter space of HA is equal to

the total parameter space (left-hand panel of Figure 4.1). For HB, µO and µU

are assumed to be equal, which implies that only that part of the parameter

space in which µO is equal to µU is admissible. This is represented by the

diagonal in the center panel of Figure 4.1. For HC , only combinations of µO

and µU are permitted in which µO is smaller than µU , which results in the

lower triangle in the right-hand panel of Figure 4.1. Note that, with respect

to the admissible parameter space, the hypotheses can be ordered from a

small parameter space to a large parameter space: HB, HC , HA.
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Figure 4.2: The likelihood function plotted as a function of µO and µU

4.2.3 Likelihood

The second component is the likelihood of specific values of the parameters,

which is the representation of the information about the means in the data set

(see, e.g. S. Lynch, 2007, pp. 36-37). In Figure 4.2 an illustrative likelihood

function is plotted as a function of µO and µU . The higher this surface, the

more likely the corresponding combination of µO and µU in the population

becomes. In this example the sample means are 1.50 (SD = 0.33) for µO and

1.61 (SD = 0.39) for µU . So, given the data, the combination µO = 1.50 with

µU = 1.61 is the most plausible, or the most likely combination of values for

the population means. As can be seen in Figure 4.2, the likelihood function

achieves its maximum for this combination. Other combinations of means

are less likely. For example, the value of the likelihood function is much lower

for the combination µO = 0.50 and µU = 2.10 and hence this combination of

values is less likely to be the population values.
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Figure 4.3: Likelihood function of the data within the admissible parameter space

4.2.4 Marginal Likelihood

The third component is the marginal likelihood (e.g. Chib, 1995; Kass

& Raftery, 1995), which is a measure for the degree of support for each

hypothesis provided by the data. The marginal likelihood is approximately

equal to the average height of the likelihood function within the admissible

parameter space. Let us elaborate on this.

Recall that Figure 4.1 presents the admissible parameter space for each

hypothesis and Figure 4.2 displays the likelihood as a function of µO and

µU . Both pieces of information are combined in Figure 4.3. The likelihood

function in Figure 4.2 is now presented as a contour plot in Figure 4.3. The

maximum value of the likelihood is located in the center of the smallest circle.

Remember that as you move away from this center, the value of the likelihood

of the combination of population means of µO and µU becomes smaller.

Because the admissible parameter space for HA is equal to the total

parameter space, the marginal likelihood of HA can be computed as the

average value of the likelihood in the total parameter space. This value

is only meaningful in comparison to the marginal likelihood values of the

other hypotheses under investigation. For HB the average likelihood value is

computed with respect to the diagonal in Figure 4.3 and for HC , the average

likelihood value is computed in the lower triangle in Figure 4.3. The marginal
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likelihood values are HA = 2.83 e−67; HB = 1.81 e−68; HC = 5.71 e−67. As

can be seen, HC has the highest value, followed by HA and then HB.

Note that comparing models can not only be done by comparing marginal

likelihood values (e.g., Raftery, 1995), but also using the well known model

selection criteria AIC (Akaike, 1981) and BIC (Schwarz, 1978). These

selection criteria combine fit and complexity to determine the support for

a particular model (Burnham & Anderson, 2004). However, in contrast to

Bayesian model selection these classical criteria are as of yet unable to deal

with hypotheses specified using inequality constraints (Mulder, Klugkist et

al., 2009). If we take a closer look at the plots in Figure 4.3, we can also

observe model fit and model size which are important components of the

marginal likelihood.

Many high likelihood values are located within the admissible parameter

space of H and HA, but not in HB. This indicates a good model fit for HC

and HA, but not for HB. Moreover, HC has a smaller admissible parameter

space compared with HA and is therefore less complex. Furthermore, note

that the likelihood values in the upper triangle in HC are low and are not

taken into account in the computation of the marginal likelihood for HC , but

are taken into account in the computation of the marginal likelihood for HA.

Consequently, the average likelihood value of HC , and hence its marginal

likelihood, is larger than the average likelihood, marginal likelihood, value of

HA. For HB, only small likelihood values are within the admissible parameter

space which implies a poor model fit. Although the admissible parameter

space is smallest for HB, the marginal likelihood is smaller than that of HA

and HC because of the ’poor’ model fit. In sum, the marginal likelihood

rewards a hypothesis with the correct (in)equality constraints. This is

because the average likelihood value is higher when many small likelihood

values are not taken into account. The smaller the parameter space, the less

complex a model becomes. Therefore, the methodology combines model fit

and model size of a hypothesis.



4.2. BAYESIAN STATISTICS 67

4.2.5 Bayes Factors

As was shown by Klugkist et al. (2005) informative hypotheses can be

compared using the ratio of two marginal likelihood values, resulting in

Bayes factors (denoted by BF), see Kass and Raftery (1995), for a statistical

discussion of the Bayes factor (see also Hoijtink, Klugkist & Boelen, 2008).

The outcome represents the amount of evidence in favour of one hypothesis

compared with another hypothesis. The results may be interpreted as follows:

BF = 1 states that the two hypotheses are equally supported by the data;

BF > 1 states that the support for one hypothesis is higher than for another

hypothesis.

In our simple example, the BF for HC compared to HA can be obtained

from the marginal likelihoods of both hypotheses:

BFCA =
MC

MA

=
5.71e−67

2.83e−67
≈ 2 . (4.2)

This Bayes factor, BFCA, implies that after observing the data, HC receives

two times more support from the data than HA. For BFCB the result implies

that HC receives

BFBC =
MB

MC

=
1.81e−68

5.71e−67
≈ 31 , (4.3)

as much support from the data than HB.

Recall that Bayes factors provide a direct quantification of the support in

the data for the constraints imposed on the means. With support we mean:

the trade-off between model size and model fit. Every researcher will agree

that 31 times more support seems considerable while, for example, 1.04 times

as much support does not. However, clear guidelines are not provided in the

literature, nor do we provide them here. We refrain from doing so because

we want to avoid creating arbitrary decision rules. Remember the famous

quote about p-values: “[. . .] surely, God loves the .06 nearly as much as the

.05” (Rosnow & Rosenthal, 1989, p. 1277).
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4.3 Guidelines

When evaluating a set of predetermined informative hypotheses using

Bayesian model selection, we recommend the following three-step procedure.

4.3.1 Step 1

In the first step the informative hypotheses have to be formulated. That is,

the expected ordering of the parameters needs to be specified. If there are

conflicting expectations, multiple informative hypotheses may be specified.

The informative hypotheses need to be formulated in terms of (in)equality

constraints between parameters in the input file of the software (e.g. µO <

µU). In addition, in Step 1 the strategy of analysis can be determined, if you

want to evaluate all hypotheses at once, or if the best hypothesis is combined

with other constraints, and so on. We provide an example of such a strategy

in the next section.

4.3.2 Step 2

After running the software, each informative hypothesis under investigation

is provided with a BF against the unconstrained hypothesis. That is, no

constraints are imposed on any of the parameters of interest, and any ordering

is equally likely, If this BF is larger than 1, it can be concluded that there

is support from the data in favour of that particular informative hypothesis.

If the BF of a certain informative hypothesis versus the unconstrained

hypothesis is smaller than 1, it can be concluded that there no support in the

data for the informative hypothesis. This procedure should be repeated for all

informative hypotheses under investigation. The reason for calculating these

BFs, is to enable inspection of the overall model fit of the hypotheses under

investigation. With other words, you do not want to perform model selection

among only poor hypotheses. Subsequently, the informative hypotheses can

be divided into a set of ’supported’ hypotheses and a set of ’unsupported’

hypotheses.
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In our simple example, HA is the unconstrained hypothesis. The Bayes

factor, BFCA, for HC compared with HA is 2, indicating that HC receives

support from the data. The BFBA for HB compared with HA is .06, which

suggests that HB receives less support from the data than the unconstrained

hypothesis HA. Hence, HB can be considered as ’unsupported’ while the HC

can be considered as ‘supported’. After observing that a certain hypothesis

is ‘unsupported’, it may be omitted from the set of hypotheses under

investigation. However, if you still want to know how much better an

‘unsupported’ hypothesis is against other hypotheses, you can maintain the

’unsupported’ hypothesis for Step 3.

4.3.3 Step 3

In the third step, all the informative hypotheses of interest are compared

with each other (these might include ‘unsupported’ hypotheses). From these

results, it can be concluded how much support there is for each of the

informative hypothesis under investigation. There are three options for doing

so.

First, when there are two or three informative hypotheses all mutual BFs

can be computed. In our simple example, the two informative hypotheses

are HB and HC . These hypotheses are directly compared with each other

by calculating the BFCB. The methodology allows for doing so if we use the

BFs against the unconstrained hypothesis by calculating

BFCB =
BFCA
BFBA

=
2

.06
≈ 31. (4.4)

This result implies that HB receives 31 times as much support from the data

as HC . So, if we were to choose between the informative hypotheses under

investigation, hypothesis HC would win the model selection competition.

From this analysis it can be concluded that over-controlled adolescents score

lower on externalizing problem behaviour than under-controlled adolescents.

Second, if more informative hypotheses are considered, it is not practical

to present the BFs for all possible comparisons. Instead you can provide
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the BFs comparing the hypothesis with the largest support of Step 1 against

each of the others. HA receives the highest BF of Step 1 and if there were

more hypotheses under investigation the BFs would all be computed using

this BF.

Third, an easy way to interpret a set large set of BFs is to convert them

into a relative support measure, sometimes referred to as posterior model

probabilities (PMPs). Note that the relative support measure is not a real

probability, but it can be loosely interpreted as the probability on a 0-1 scale

that the hypothesis at hand is the best of a set of finite hypotheses after

observing the data. A PMP is computed for each model under consideration

and this way an easy comparison of many models can be made. The relative

fit of HC is computed by dividing its BF compared with the unconstrained

hypothesis by the sum of all BFs:

2

(1 + 0.06 + 2)
= .65 . (4.5)

The relative fit of HA and HB are .33 and .02 respectively.

4.4 Psychological Functioning, Personality and

Support from Family

4.4.1 Introduction

Van Aken and Dubas (2004) investigated differences between three persona-

lity types among adolescents: resilient (R), over-controlled (O), and under-

controlled adolescents (U). The main question was whether psychosocial

functioning is the result of the interplay between personality and support

from family.

The problem behaviour list (De Bruyn, Vermulst & Scholte, 2003) was

used to obtain parent reports on adolescent’s behavioural problems. Three

subscales were used, namely externalizing (E), internalizing (I) and social



4.4. PSYCHOLOGICAL FUNCTIONING, PERSONALITY AND SUPPORT FROM FAMILY 71

Table 4.1: Groups of Adolescents Based on Personality Type, Problem Behaviour and

Support

Problem behaviour

Externalizing Internalizing Social

Resilient High family support µRHE µRHI µRHS

Low family support µRLE µRLI µRLS

Over High family support µOHE µOHI µOHS

Low family support µOLE µOLI µOLS

Under High family support µUHE µUHI µUHS

Low family support µULE µULI µULS

problem behaviour (S). Personality types (R, O, U) were denoted using big-

five personality markers (Gerris et al., 1998). Finally, the relational support

inventory (Scholte, Van Lieshout & Van Aken, 2001) was used to measure

the support that children receive from their parents to obtain high (H) versus

low (L) family support.

Based on personality type (R, O, U), high or low family support (H, L),

3 x 2 = 6 groups were constructed, see Table 4.1. Let µ denote the mean

score on the dependent variable, then µRHE is the mean score for Resilient

adolescents with High family support on the dependent variable Externalizing

behaviour. To analyze this data we follow the three-step procedure described

above.

4.4.2 Step 1

The first two expectations (HA and HB) are based on several studies showing

that the three personality types have a distinct pattern of psychosocial and

relational functioning (Van Aken, Van Lieshout, Scholte & Haselager, 2002).

HA states that under-controllers are expected to have the most externalizing

problems and over-controllers are expected to have the most internalizing

problems. Over-controllers and under-controllers are believed to score

higher on social problems compared with resilient adolescents. Moreover,

no constraints are specified with respect to high/low family support. The
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informative hypothesis HA can be formulated as

HA :


(µRHE, µRLE, µOHE, µOLE) < (µUHE, µULE)

(µRHI , µRLI , µUHI , µULI) < (µOHI , µOLI)

(µRHS, µRLS) < (µOHS, µOLS, µUHS, µULS) .

(4.6)

HB states, additionally to HA, that resilient adolescents function best in all

psychosocial domains in comparison with the other two types of adolescents.

Hence, the informative hypothesis HB contains two additional constraints in

comparison to HA,

HB :


(µRHE, µRLE) < (µOHE, µOLE) < (µUHE, µULE)

(µRHI , µRLI) < (µUHI , µULI) < (µOHI , µOLI)

(µRHS, µRLS) < (µOHS, µOLS) , (µUHS, µULS) .

(4.7)

Previous research also indicates that it is the combination of personality

type and the quality of social relationships that determines the risk level for

experiencing more problem behaviour (Van Aken et al., 2002). Therefore,

additional constraints are constructed for the third expectation (HC). Over-

and under-controllers with high perceived support from parents are expected

to function better in psychosocial domains than those with low perceived

support. For the resilient group, the level of support from parents is not

related to problem behaviour. The constraints for informative hypothesis

HC are

HC :


(µRHE = µRLE) , (µOHE < µOLE) , (µUHE < µULE)

(µRHI = µRLI) , (µUHI < µULI) , (µOHI < µOLI)

(µRHS = µRLS) , (µOHS < µOLS) , (µUHS < µULS) .

(4.8)

The strategy of analysis is first to determine which hypothesis, HA or HB,

receives the most support from the data. The best of these two hypotheses

is then combined with the constraints of HC to investigate whether these

additional constraints are supported by the data. After having specified

these hypotheses, we ran the software described in Mulder, Klugkist et al.

(in press).
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Table 4.2: Results of Bayesian model selection for the example of Van Aken and Dubas

(2004)

Expectation BF* BF** BF***

HA 30.28 1 -

HB 64.20 2.12 1

HBC 1399.00 - 21.79

*BF compared with the unconstrained hypothesis

** BF between HA and HB

*** BF between HB and HBC

4.4.3 Step 2

The second step involves comparing HA, HB, and HC with the unconstrained

hypothesis, HU . The results, see the second column of Table 4.2, show that

all informative hypotheses have a BF larger than 1 versus HU . For example,

the BF between HA and HU is 30.28, indicating that HA receives 30.28 times

more support than HU . From these BFs, it can be concluded that each of

the hypotheses HA, HB, and HC receives support from the data and have a

good model fit.

4.4.4 Step 3

The second step involves comparing informative hypotheses with BFs. We

first want to compare HA with HB to decide whether, additional to the

constraints of HA, resilient adolescents function best in all psychosocial

domains. The BF of HB against HA is given by

BFBA =
BFBU
BFAU

=
64.20

30.28
= 2.12 . (4.9)
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The support for HB is about twice as strong as for HA. From this analysis

it can be concluded that additional to the constraints of HA, there is also

evidence that resilient adolescents score lower on externalizing behaviour

than over-controlled adolescents and that resilient adolescents score lower on

internalizing behaviour than under-controlled adolescents as was assumed by

expectation HB.

Secondly, we were interested to see whether the additional constraints of

HC presented in Equation (4.8) are supported by the data. Consequently,

the additional constraints of HC are combined with the constraints of HB,

leading to the informative hypothesis HBC ,

HBC :


(µRHE = µRLE) < (µOHE < µOLE) < (µUHE < µULE)

(µRHI = µRLI) < (µUHI < µULI) < (µOHI < µOLI)

(µRHS = µRLS) < (µOHS < µOLS) , (µUHS < µULS)

(4.10)

We calculated the BF of HBC versus HB (see the fourth column in Table 4.2).

These BFs show that there is much support in favour of HBC compared with

HA or HB. For example, the BF for HBC against HB is 21.79; in other words

there is approximately 21 times as much support for HBC as for HB. From

this analysis it can be concluded that the additional constraints of HC are a

meaningful addition to the constraints of HB.

4.4.5 Conclusion

The results of Bayesian model selection for the example relating to persona-

lity types and problem behaviour provides strong support for the idea that it

is the combination of personality type and the quality of social relationships

that puts adolescents at risk of greater problem behaviour. Note that this

is the same conclusion as in Van Aken and Dubas (2004), but now we

learned even more about the data: how much support there is for each of

the expectations. That is, there is approximately 21 times as much support

for the additional expectations of HC compared with the constraints of HB

alone.
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Table 4.3: Means for the example of Van Aken and Dubas (2004)

Problem behaviour

Externalizing Internalizing Social

Resilient High family support (n = 135) 1.50 1.88 1.69

Low family support (n = 70) 1.64 1.94 1.80

Over High family support (n = 76) 1.43 2.05 1.77

Low family support (n = 81) 1.58 2.18 1.94

Under High family support (n = 70) 1.52 2.04 1.81

Low family support (n = 131) 1.68 2.13 1.95

An examination of the means for all groups (see Table 4.3) shows that

the constraints of HBC are mostly supported by the data, but not perfectly.

For example, in the over-controlled group with high family support social

problem behaviour is lower than in the low family support group (1.77 vs.

1.94, respectively). In the resilient group high and low family support groups

should have had the same levels of problem behaviour, but although the

differences are small, this is not the case. The constraints imposed by HBC

on the means fit well enough for this hypothesis to win the model selection

competition.

4.5 Discussion

In this paper we have shown that Bayesian model selection is a useful

tool when evaluating informative hypotheses. The resulting Bayes factor

quantifies the amount of support received from the data for each informative

hypothesis. In the current paper we offer an introduction to the methodology

for non-statisticians and we are the first to present a step-by-step approach

to analyzing informative hypotheses with Bayesian model selection.

The major benefit of the method of evaluating informative hypotheses

with Bayesian model selection is that: (i) there is a direct answer to

the research question: how much better is one hypothesis versus another

hypothesis; (ii) the amount of support for each hypothesis is quantified for
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each hypothesis versus the unconstraint hypothesis to obtain overall model

fit and for all informative hypotheses under investigation. The first step of

the methodology described in this paper is to specify the constraints between

the parameters of interest and hence to determine the admissible parameter

space. Within the admissible parameter space a prior distribution needs to

be specified. The methodology of evaluating informative hypotheses using

Bayesian model selection employs a so called encompassing prior approach

(Klugkist et al., 2005). The actual specification of this encompassing prior

distribution is not considered to be the topic of this paper and the interested

reader is referred to Mulder, Hoijtink and Klugkist (2009), and Mulder,

Klugkist et al. (2009) for a detailed description of a default specification

of the prior distribution used in the software we used in the current article.

Some research has been done on testing informative hypotheses in the

null hypothesis framework, see the standard works of Barlow et al. (1972);

Robertson et al. (1988); Silvapulle and Sen (2004), or see Van de Schoot,

Hoijtink and Deković (2010) for testing informative hypotheses in structural

equation models. However, these methods compare either a null hypothesis

or an unconstrained hypothesis with one single informative hypothesis. These

methods cannot deal with evaluating two or more informative hypotheses at

the same time.

In conclusion, if researchers in psychology want to learn as much as

possible from their data and if they want to judge the plausibility of

expectations, Bayesian model selection, described in the current paper, is

a promising and exciting tool.
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Abstract

Researchers often have expectations that can be expressed in the form of inequality

constraints among the parameters of a Structural Equation Model (SEM). It is currently

not possible to test these so-called informative hypotheses in SEM software. We offer a

solution to this problem using Mplus. The hypotheses are evaluated using plug-in p-values

with a calibrated alpha level. The method is introduced and its utility is illustrated by

means of an example.
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Order restricted inference has been studied in the frequentist framework

(see for example the books of: Barlow et al., 1972; Robertson et al., 1988;

Silvapulle & Sen, 2004) as well as in the Bayesian framework (e.g. Hoijtink,

Klugkist & Boelen, 2008; Klugkist et al., 2005). However, testing order

constraints has received relatively little attention in the Structural Equation

Modeling (SEM) literature (Gonzalez & Griffin, 2001; Stoel, Galindo-Garre,

Dolan & Van den Wittenboer, 2006). SEM is often used and its attractiveness

is largely due to its flexibility in specifying and testing hypotheses among

both observed and latent variables in multiple groups.

SEM software can be used to impose inequality constraints among

the parameters of interest. More specifically, in order to evaluate a

research question, model parameters such as regression coefficients can

be constrained to being greater or smaller than either a fixed value or

other regression coefficients. We call hypotheses that contain inequality

constraints informative hypotheses. Mplus (Muthén & Muthén, 2007) allows

for such user-specified constraints and order constraint parameter estimation

is available. The problem is that a null hypothesis test for the evaluation of

an informative hypothesis is lacking in SEM software.

We offer a solution to this problem based on the parametric bootstrap

method available in Mplus. Plug-in p-values are obtained using a likelihood

ratio test. The performance of these p-values is evaluated and we will

show that the alpha level should be calibrated. Using some examples, we

demonstrate how this can be done.

5.1 Constraint Parameter Estimation and

Hypothesis Testing

Ritov and Gilula (1993) proposed to obtain maximum likelihood estimates

of order-restricted models by a pooling adjacent violators algorithm (see
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also, Robertson et al., 1988, p.56). The procedure in Mplus (Muthén &

Muthén, 2007), the slacking parameter method, is based on the solution of

Ritov and Gilula. The core of the algorithm is estimating the parameters

via the maximum likelihood method such that the likelihood is maximized

using the sequential quadratic programming method (Han, 1977). In this

method the parameters that contain inequality constraints are updated in

an iterative process where inequality constraints are treated as equality

constraints whenever the estimates do not fit the constraints imposed on

the parameters. This is done by the introduction of ‘slack’ parameters into

the model, see Schoenberg (1997) for more details.

How to test inequality constraint hypotheses has mainly been studied

outside the SEM model, see the books of Barlow et al. (1972), Robertson

et al. (1988), and Silvapulle and Sen (2004) for a comprehensive overview.

Besides, in 2002 the Journal of Statistical Planning and Inference published

a special issue on testing inequality constraint hypotheses (V. W. Berger

& Ivanova, 2002; Chongcharoen, Singh & Wright, 2002; Khalil, Saikali

& Berger, 2002; C. C. Lee & Yan, 2002; Perlman & Wu, 2002a, 2002b;

Sampson & Singh, 2002; Silvapulle et al., 2002; Sen & Silvapulle, 2002),

but none of these articles discussed constraints in SEM models. Testing

informative hypotheses for SEM models has been described by Stoel et al.

(2006). In this study, constraints were imposed on variance terms to obtain

only positive values. Hypotheses tests were performed to test the benefit of

these constraints (see also, Gonzalez & Griffin, 2001). Also, Tsonaka and

Moustaki (2007) described testing parameter constraints in SEM models.

In specific they described factor analysis where a parametric bootstrap was

performed to obtain the results. However, they only considered a comparison

between a constrained and an unconstrained model. In the present study

we will also focus on constraint hypothesis testing within the SEM model,

and although we will present examples of a path model, our solution is not

limited to these kind of models. We will also show that the alpha values used
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in constraint hypothesis testing need to be calibrated, which is not done in

the studies described above.

In almost all of the books and papers described above, the likelihood

ratio test (LRT) is used to test the inequality constraint hypothesis at hand.

The null distribution of this test is a chi-square distribution with degrees

of freedom equal to the difference between the number of parameters of the

models under comparison (Bollen, 1989). An important result from the work

of Barlow et al. (1972), Robertson et al. (1988), and Silvapulle and Sen

(2004) is that one of the regularity conditions of the LRT does not hold

when testing inequality constraint hypotheses (see also, Andrews, 1996, 2000;

Ritov & Gilula, 1993; Stoel et al., 2006). Consequently, the asymptotic

distribution of the LRT is no chi-square distribution and its p-value can not

straightforwardly be computed.

Moreover, model selection criteria, such as the AIC or BIC, can not be

used to distinguish between statistical models with inequality constraints

between the parameters of interest. These criteria use the likelihood

evaluated in its maximum as a measure of model fit, and the number of

parameters of the model as a measure of complexity. The problem is that

model selection criteria can not distinguish between hypotheses when these

hypotheses do not differ in model fit but they only differ in the number of

constraints imposed on the parameters of interest.

For example, consider the hypothesis {θ1 − θ2} < θ3 > 0 where

θ1 . . . θ3 denote for example mean scores on some variable. Furthermore,

suppose we want to compare this informative hypothesis to an unconstrained

hypothesis where the parameters are allowed to have any value. Suppose the

unconstraint parameter estimates fit the constraints, so that the estimated

parameters agree with {θ1 − θ2} < θ3 > 0. In this case, both the constraint

and unconstraint hypotheses do not differ in model fit, i.e. the maximum of

the likelihood is the same for both models. The problem is how to account

for model complexity. Because the parameters are restricted, the number of

parameters used to determine model complexity is clearly not equal to 3. So
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far, quantifying the number of parameters for constraint hypotheses received

hardly any attention in the literature.

In conclusion, evaluating informative hypotheses in SEM models is neither

possible with the likelihood ratio test, nor with traditional model selection

criteria. Constraint parameter estimation and informative hypothesis testing

has extensively been studied, but literature for SEM models is sparse. Also,

as we will show in this paper, calibration of the alpha level is essential when

testing inequality constraint hypotheses. This received hardly any attention

in the literature described before. We will show how informative hypotheses

can be tested in SEM models using Mplus, but we first introduce an example

in which the hypothesis of interest are informative.

5.2 Ethnicity and Antisocial behaviour

The problem of testing inequality constrained hypotheses in SEM and its

solution is illustrated using the following example. Deković et al. (2004)

investigated whether the leading theories about antisocial behaviour in the

dominant culture of adolescents can be generalized to members of different

ethnic groups. For this example the dominant culture is the Dutch culture

which is compared to the Moroccan, Turkish and Surinamese cultures

in the Netherlands. Three aspects of the parent adolescent relationship

were assessed: positive quality of the relationship (affection and intimacy),

negative quality of the relationship (antagonism and conflict) and disclosure

(how much adolescents tell the parents). The sample consists of 603

adolescents (mean age 14.4, range 14-16 years), 68% of the adolescents are

Dutch (n = 407), 11% are Moroccan (n = 68), 13% are Turkish (n = 79) and

8% are Surinamese (n = 49). Adolescents were classified into these ethnic

categories according to their responses on a single item in the questionnaire:

”What ethnical group best describes you?” Using these data we present three

examples where the hypothesis under investigation is informative.
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The structural equation model used here is given by

ygi = Bgygi + Γgxgi + ζgi with xi ∼ N(µgx,Φ
g) (5.1)

where, if q is the number of dependent variables, r is the number of

independent variables, g = 1, . . . , G denotes group membership and i =

1, . . . , I denote persons, then ygi is a q × 1 vector of dependent variables for

person i within group g, Bg is a q×q matrix of regression coefficients between

y’s where the diagonal must consist of zeros, xi is a r×1 vector of independent

variables, µgx is a r × 1 vector of means for each independent variable with

covariance matrix Φg, Γg is q × r matrix of regression coefficients between

y’s and x’s, ζgi is q × 1 vector with error terms which is assumed to have a

multivariate-normal distribution, ζgi ∼ N(0,Ψg), which is independent of y

and x. Under these assumptions, the observed yi and xi have a multivariate-

normal distribution with[
ygi
xgi

]
∼ Nq+r

(
µgy
µgx

,Σg

)
(5.2)

where Σ represents the implied covariance matrix which is given by

Σg =


Σg
yy Σg

xy

(q×q) (r×q)

Σg
yx Σg

xx

(q×r) (r×r)

 (5.3)

with I being the identity matrix and

Σg
xx = Φg

Σg
yy′ = (I−Bg)−1(ΓgΦgΓ′g + Ψg)(I−Bg)−1′

Σg
xy = ΦgΓg(I−Bg)−1′ .

(5.4)

Let θ = {θ1,θ2} with θ1 = {B1, . . . ,BG,Γ1, . . . ,ΓG} and θ2 = {Φ1, . . . ,

ΦG,Ψ1, . . . ,ΨG}. Then, the likelihood function can be given by

logf(y,x | θ) =
∑G

g=1(Ng

N
)FgML

[
Sg,Σg

]
(5.5)
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where Ng is the sample size for group g, Sg is the sample covariance

matrix among the observed variables in group g, y = {y1, . . . ,yN}, x =

{x1, . . . ,xN} and where FgML is given by

FgML = log | Σg | +tr
[
SgΣg−1 − log | Sg | −(q + r)

]
(5.6)

We consider two types of hypothesis tests (Silvapulle & Sen, 2004), type

A is of the form
H0 : Aθ1 = c

H1 : Aθ1 > c,
(5.7)

and type B is of the form

H0 : Aθ1 > c

H1 : unconstrained,
(5.8)

where the unconstrained model refers to a model without any constraints

imposed on the parameters and where, if m is the number of inequality

constraints imposed on the model and k the number of parameters involved,

A is an m× k matrix of known constants, and c an m× 1 vector of known

constants. More specific examples will be given in the sequel.

5.2.1 Example 1: Simple Regression

The first example is a simple regression model where levels of antisocial

behaviour are regressed on either a negative or positive relation with the

parent and adolescent disclosure, see Figure 5.1, where B = ∅ and

Γ =
[
γ1 γ2 γ3

]
, (5.9)

Ψ =
[
ψ1

]
, (5.10)

Φ =

 φ11

φ12 φ22

φ13 φ23 φ33

 . (5.11)
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 Positive Quality (x1)

Disclosure (x3)

Negative Quality (x2) Antisocial Behavior (y1)

1γ

2γ

3γ

1ζ

Figure 5.1: Path model between relationship characteristics, disclosure, and prevalence of

antisocial behaviour

Note that this model is based on the total sample, therefore the superscript

g is not needed.

Deković et al. (2004) state that adolescent disclosure is the strongest

predictor of antisocial behaviour, followed by either a negative or positive

relation with the parent (see also: Dishion & McMahon, 1998). We therefore

hypothesize that the regression coefficients γ1 and γ2 are smaller than γ3.

Using

A =

[
−1 0 1

0 −1 1

]
, (5.12)

θ1 =

 γ1

γ2

γ3

 , (5.13)

c =

[
0

0

]
, (5.14)
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the hypotheses tested for this example with m = 2, are for type A

H0 :

versus

H1 :

[
γ3 − γ1 = 0

γ3 − γ2 = 0

]

[
γ3 − γ1 > 0

γ3 − γ2 > 0

]
,

(5.15)

and for type B

H0 :

versus

H1 :

[
γ3 − γ1 > 0

γ3 − γ2 > 0

]

[
γ3 , γ1

γ3 , γ2

]
.

(5.16)

Note that H1 in (16) can also be written as {γ1 , γ2} < γ3. This type

of notation will be used in the remainder of this paper. We used M-plus

version 5 (Muthén & Muthén, 2007) to estimate the unconstrained and

constrained regression coefficients, see Table 5.1. As can be seen in this

table, the unconstrained estimate of γ2 is not smaller than γ3. Consequently,

the constrained estimates of γ2 and γ3 are set equal by the introduction of a

‘slack’ parameter, see the lower panel of Table 5.1.

5.2.2 Example 2: Multi Group Analysis

Research about the nature and impact of antisocial behaviour is dominated

by studies conducted with white, western, middle class adolescents (Deković

et al., 2004). It could be questioned whether the model in Figure 5.1 is the

same for different ethnic groups living in The Netherlands: Dutch (indicated

by g = 1), Turkish (g = 2), Moroccan (g = 3), and Surinamese adolescents
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Table 5.1: Regression Coefficients for Example 1

Coefficient B SE

Unconstrained

γ1 .06 .02

γ2 .24 .03

γ3 .23 .03

Constrained

γ1 .06 .02

γ2 .235 .03

γ3 .235 .03

(g = 4), where B = ∅ and

Γ1 = [ γ1
1 γ1

2 γ1
3 ]

...

Γ4 = [ γ4
1 γ4

2 γ4
3 ] ,

(5.17)

Ψ1 = [ ψ1
1 ]

...

Ψ4 = [ ψ4
1 ] ,

(5.18)

Φ1 =

...

Φ4 =

 φ1
11

φ1
12 φ1

22

φ1
13 φ1

23 φ1
33


 φ4

11

φ4
12 φ4

22

φ4
13 φ4

23 φ4
33

 .

(5.19)

The null hypothesis is that the regression coefficients for the predictors of

antisocial behaviour are the same for all ethnic groups (see for example

Greenberger & Chen, 1996):

H0 :

 γ1
1 = γ2

1 = γ3
1 = γ4

1

γ1
2 = γ2

2 = γ3
2 = γ4

2

γ1
3 = γ2

3 = γ3
3 = γ4

3 .

 (5.20)
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According to Deković et al. (2004) there are also indications in the literature

that the same risk factors have different effects in different ethnic groups, a so-

called process times context interaction phenomenon. The authors expected

that cross-ethnic variations result in weaker relations between parent-child

relations and adolescent behaviour compared to Dutch families. This was

mainly expected because of differences in family expectations (Phalet &

Schönpflung, 2001) and differences in intergenerational conflicts due to

migration (Deković, Noom & Meeus, 1997). The informative hypothesis H1

is:

H1 :

 γ1
1 > {γ2

1 , γ
3
1 , γ

4
1}

γ1
2 > {γ2

2 , γ
3
2 , γ

4
2}

γ1
3 > {γ2

3 , γ
3
3 , γ

4
3}

 . (5.21)

The hypotheses that are tested for this example are for type A: (5.20) versus

(5.21); and for type B: (5.21) versus the unconstrained model. In Table 5.2

the unconstrained and constrained regression coefficients are shown. As can

be seen, not all unconstraint regression coefficients are in agreement with the

constraints of H1 in (21). For example γ2 for the Dutch adolescents is smaller

instead of higher than γ2 for Moroccan adolescents. The bottom of Table

5.2 renders parameter estimates, obtained with the parameter slack method,

that are in agreement with the constraints.

5.2.3 Example 3: Path Model

The third example includes the variable hanging around with deviant peers.

The hypothesis states that problem behaviour is not only directly predicted

by disclosure and a negative or positive relation with the parent, but is also

indirectly predicted via hanging around with deviant peers, see Figure 5.2,

where

B =

[
0 0

β21 0

]
, (5.22)

Γ =

[
γ11 γ12 γ13

γ21 γ22 γ23

]
, (5.23)
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Table 5.2: Regression Coefficients for Dutch, Moroccan, Turkish and Surinamese

adolescents for Example 2 (Standard error between brackets)

Ethnicity

Coefficient Dutch Moroccan Turkish Surinamese

Unconstrained

γ1 .05 (.03) .12 (.09) .04 (.08) .15 (.09)

γ2 .28 (.03) .23 (.11) .16 (.08) .08 (.11)

γ3 .20 (.04) .33 (.13) .25 (.10) .24 (.14)

Constrained

γ1 .06 (.02) .06 (.02) .03 (.07) .06 (.02)

γ2 .28 (.03) .28 (.03) .16 (.08) .08 (.11)

γ3 .22 (.03) .22 (.03) .22 (.03) .16 (.12)

Ψ =

[
ψ11

0 ψ22

]
, (5.24)

Φ =

 φ11

φ12 φ22

φ13 φ23 φ33

 . (5.25)

Note that this model is based on the total sample, therefore superscript g is

not needed.

As is argued by Deković et al. (2004) children spend, especially in

adolescence, more and more time with their peers without adult supervision

(see also Mounts & Steinberg, 1995). During this period peers become the

most important reference group for adolescents. Deković et al. (2004) state

that especially in this period the association with deviant peers has emerged

as the most prominent predictor of problem behaviour. The hypotheses

tested for Example 3 are hypothesis type A:

H0 : β21 = γ21 = γ22 = γ23

versus

H1 : β21 > {γ21 , γ22 , γ23}
(5.26)
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Deviant Peers (y1)

 Positive Quality (x1)

Disclosure (x3)

Negative Quality (x2) Antisocial Behavior (y2)

11γ

12γ

13γ

2ζ

1ζ

21γ

22γ

23γ

21β

Figure 5.2: Path model between relationship characteristics, hanging around with deviant

peers, and prevalence of antisocial behaviour

and hypothesis type B

H0 : β21 > {γ21 , γ22 , γ23}
versus

H1 : β21 , γ21 , γ22 , γ23 .

(5.27)

The unconstrained and constrained regression coefficients are shown in Table

5.3. As can be seen in this table, the constrained coefficients do not differ

from their unconstrained counterparts. Hence, the constraints imposed by

the informative hypothesis are not contradicted by the data.

5.3 Parametric Bootstrap

To evaluate informative hypotheses like presented in the previous section we

make use of the parametric bootstrap. Bootstrapping is an approach for

statistical inference falling within a broader class of resampling methods

(Efron & Tibshirani, 1993). Various authors have suggested using the

parametric bootstrap when the parameter space is restricted (Galindo-Garre

& Vermunt, 2004, 2005; Ritov & Gilula, 1993; Stoel et al., 2006; Tsonaka &

Moustaki, 2007).
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Table 5.3: Regression Coefficients for Example 3

Coefficient B SE

Unconstrained

γ11 .05 .03

γ12 .31 .03

γ13 .22 .04

β21 .55 .02

constrained

γ11 .05 .03

γ12 .31 .03

γ13 .22 .04

β21 .55 .02

5.3.1 Bootstrap method

The method we advocate starts with the observed data z = {y,x} and the

likelihood in Equation (5.5) (see Start in Figure 5.3). Step 1 is a parametric

bootstrap from a population in which the null hypothesis is true. First, θ is

estimated under H0 using the data z resulting in

f(z|θ̂H0|z) . (5.28)

Using (5.28), T bootstrap samples of size n are generated, resulting in data

sets zrept , for t = 1, . . . , T , see Figure 5.3.

Then, θ is estimated for each replicated data set under H0, rendering

f(zrep1 |θ̂H0|zrep1
) . . . f(zrepT |θ̂H0|zrepT

) . (5.29)

Further, θ is estimated under H1, rendering

f(zrep1 |θ̂H1|zrep1
) . . . f(zrepT |θ̂H1|zrepT

) . (5.30)

The second step, denoted by Step 2 in Figure 5.3, is to repeat these

computations conditional on the observed data set and to compute f(z|θ̂H0|z)

and f(z|θ̂H1|z).
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The final step, see the lower part of the top panel of Figure 5.3, is to

choose a test statistic, denoted by Λ, to investigate the compatibility of the

null hypothesis with the observed data. Like many previous studies (e.g.

Barlow et al., 1972; Robertson et al., 1988; Silvapulle & Sen, 2004), we will

also use the LRT for evaluating the hypotheses at hand, but, as illustrated

before, we do not use a p-value based on a chi-square distribution.

Since f(z|θ) is proportional to the likelihood, an LRT is performed for

each replicated data set rendering

Λt = −2log

{
f(zrept |θ̂H0|zrept

)

f(zrept |θ̂H1|zrept
)

}
(5.31)

and for the observed data set it renders

Λ = −2log

{
f(z|θ̂H0|z)

f(z|θ̂H1|z)

}
. (5.32)

Now, a p-value can be computed using

p = P(Λt > Λ |H0, z) . (5.33)

It can be approximated by the proportion of LRT-values from the simulated

data sets that are equal or larger than the LRT-value of the observed data

set, resulting in the definition of the plug-in p-value

p ≈
∑T

t=1 It
T

, (5.34)

where It is an indicator function taking the value 1 if the inequality holds

and 0 otherwise:

It =

{
1 if Λt > Λ

0 otherwise .
(5.35)
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Figure 5.3: Graphical representation of the parametric bootstrap method
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A hypothetical distribution is illustrated in the graph in the lower part of

Figure 5.3. To determine whether the Λ-value from the observed data set

stems from a population where the null hypothesis is true, it has to be smaller

than a chosen alpha value. Traditional an alpha value of .05 is used and as

such the observed Λ-value has to lie on the left hand side of the dotted line in

Figure 5.3. However, as we will show in the next section in many situations

the alpha value needs to be calibrated.

The procedure described above can be conducted for type A and B

hypothesis testing. The parameter estimates and likelihood values can

be obtained using Mplus and we developed R code that automatically

computes the LRT values and the plug-in p-value from the output files of

Mplus. Input files for all examples and R code can be downloaded from

http : //www.fss.uu.nl/ms/schoot.

5.4 Frequency Properties of the Asymptotic

P-values

In the previous section we showed how to obtain plug-in p-values for the

evaluation of informative hypotheses. An appealing property for any p-

value, and consequently for our plug-in p-value, is, considered as a random

variable, to be asymptotically uniform [0,1] under the null hypothesis:

P(p < α|H0) = α. However, in some situations exact uniformity of p-values

cannot be attained (Andrews, 2000; Bayarri & Berger, 2000; Galindo-Garre

& Vermunt, 2004, 2005; Stoel et al., 2006). Andrews (2000) for example,

showed that the results of the bootstrap procedure are not coherent when

inequality constraints are imposed on the model parameters. Furthermore,

Galindo-Garre and Vermunt (2004) showed in a simulation study that the

parametric bootstrap may produce p-values that are higher than expected.

The bootstrap procedure described in the previous section may also

lead to p-values that are biased. To determine whether the actual alpha

level differs from its nominal level a double bootstrap procedure is used
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Figure 5.4: Graphical representation of the double bootstrap method
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(Efron & Tibshirani, 1993). This procedure renders a calibrated alpha level:

P(p < α∗|H0) = α, where α∗ denotes the calibrated alpha level.

As can be seen in Figure 5.4, in the double bootstrap procedure there

are two stages of bootstrapping. In Stage 1, data sets are generated

using f(z|θ̂H0|z). Note that we make an important assumption here. We

implicitly assume that in our procedure θ̂H0|z is a good approximation of

the true population values θH0 which are unknown. We assume that with n

sufficiently large, the true population values will be close to the estimated

values f(z|θ̂H0|z).

The result of Stage 1, are S data sets (for s = 1, . . . , S) and the double

bootstrap algorithm amounts to treating each bootstrap sample zreps like an

original data set in the second stage of the double bootstrap procedure, see

Stage 2 in Figure 5.4. For each first stage data set, zreps , a plug-in p-value

can be computed based on the procedure described in the previous section.

In total, S plug-in p-values are computed and a hypothetical distribution

of these values is shown in the lower part of Figure 5.4. As can be seen, it

does not have an uniform distribution, but is skewed. In Figure 5.4, the 5th

percentile of generated plug-in p-values has a plug-in p-value of .02. That

is, 5% of the p-values is smaller than .02, and for example 11% of the p-

values is smaller than .05. In such a case, the alpha level for evaluation of

the p-value computed for the observed data set needs to be calibrated. That

is, the p-value should be compared to α∗ = .02 instead of α = .05, because

P(p < .02|H0) = .05.

5.5 Results for Examples

5.5.1 Example 1

To evaluate the performance of the plug-in p-value for Example 1, in total

four double bootstraps are performed with S = 1000 and T = 1000: (A)

hypothesis test type A with n = 50; (B) hypothesis test type B with n = 50;

(C) hypothesis test type A with n = 640; and (D) hypothesis test type



96 CHAPTER 5. TESTING INEQUALITY CONSTRAINED HYPOTHESES IN SEM MODELS

Table 5.4: Results for the Double Bootstrap Procedure and the Parametric Bootstrap

Procedure for Examples 1 to 3

Hypothesis test α∗ Λ plug-in p-value

Example 1 type A (n = 50) .048 - -

type A (n = 640) .046 42.01 <.001

type B (n = 50) .024 - -

type B (n = 640) .048 17.41 <.001

Example 2 type A .038 2.55 .49

type B .058 1.07 .46

Example 3 type A .056 132.42 <.001

type B - 0.0 >.999

B n = 640. In Figure 5.5 the four corresponding distributions of plug-in

p-values are displayed.

As can be seen in Figure 5.5A and 5.5C the distribution for hypothesis

test type A is almost uniform for both n = 50 and n = 640 with P(p <

.048|H0) = .05 and P(p < .046|H0) = .05, respectively. As was shown by

Silvapulle and Sen (2004, p. 32-33), the p-values of this statistical model

and for hypothesis test type A are uniformly distributed. Our results for

small and large sample sizes are pretty close to being uniform and the small

deviations are sampling errors. Hence, the traditional alpha level of α = .05

is used to evaluate the results for the observed data set.

For hypothesis test type B, however, the distribution is clearly not

uniform, see the distributions in Figure 5.5B and 5.5D. High values of the

plug-in p-value do not exist and low values appear too often. For small n,

P(p < .02|H0) = .05 (see Table 5.4) and the alpha level for the analysis with

the observed data set needs to be calibrated, α∗ = .02. Accidentally, for

large n, P(p < .048|H0) = .05 and α∗ does not need to be calibrated much,

α∗ = .048. However, as can be seen in Figure 5.5D the distribution is clearly

not uniform, for example P(p < .30|H0) = .50 and P(p < .38|H0) = .70,

indicating that calibration is necessary for different alpha levels.
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Figure 5.5: Distribution of plug-in p-values for example 1: In (A) and (C) hypothesis test

type A is evaluated, in (B) and (D) hypothesis test B is evaluated; in (A) and (B) n = 50,

in (C) and (D) n = 640

To evaluate the hypotheses in (5.15) and (5.16) for the observed data set,

a parametric bootstrap is performed where 1000 data sets were generated.

Each of these samples was fitted under H0 for hypothesis test type A and

B. Based on the results shown in Table 5.4, it can be concluded that for

hypothesis test type A, H0 can be rejected (p < .001, α = .05). This implies
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Figure 5.6: Distribution of plug-in p-values for Example 2: in (A) test type A is evaluated,

and in (B) test type B is evaluated

that the hypothesis H0 : γ1 = γ2 = γ3 is rejected in favor of the informative

hypothesis, H1 : {γ1, γ2} < γ3. Moreover, the result of hypothesis test type

B, indicates that the informative hypothesis is rejected (p < .001, α∗ = .048)

in favor of the unconstrained model H1 : γ1, γ2, γ3. Inspection of Table 5.1

reveals that γ2 > γ3 and as such the unconstrained parameter estimates do

not fit either H0 : γ1 = γ2 = γ3 or H1 : {γ1, γ2} < γ3.

In conclusion, levels of antisocial behaviour are not evenly predicted by

how much adolescents tell the parents and by either a positive or a negative

quality of the relationship with the parents (rejection of H0 ). However, the

expectation that disclosure is the best predictor does not hold (rejection of

H1).

5.5.2 Example 2

To evaluate the hypotheses for Example 2, two double bootstraps are

performed to determine the correct alpha level for hypothesis test type A
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Figure 5.7: Distribution of plug-in p-values for Example 3, test type A.

and type B, with S = 500, T = 500 and group sizes for group g = 1, . . . , 4

equal to the sample sizes.

The results are shown in Table 5.4 and the distribution of p-values is

shown in Figure 5.6A and B for hypothesis test type A and B, respectively.

The hypothesis H0, shown in (5.20) can not be rejected in favor of hypothesis

H1 (p = .49, α∗ = .04), shown in (5.21). For hypothesis test type B the

informative hypothesis can not be rejected in favor of the unconstrained

hypothesis (p = .46, α∗ = .056). So, after testing the informative hypothesis

it appears that the observed differences shown in Table 5.2 are too small to

reject H0 shown in (5.20). This makes sense since confidence intervals, if

computed row-wise using 1.96 times SE, overlap and as such provide a lot of

support for H0 in (5.20).

In conclusion, compared to Dutch adolescents, adolescents from different

ethnic groups are satisfied to a similar degree with their relationships

with parents. Besides, Dutch adolescents disclose as much information as

adolescents from different ethnic groups.
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5.5.3 Example 3

For Example 3, a double bootstrap was performed with S = 1000, T = 1000

and n = 640 for hypothesis test type A and B. The results are shown in Table

5.4 and the distribution of p-values for hypothesis test type A is shown in

Figure 5.7. For this hypothesis test, the null hypothesis is rejected in favor

of the informative hypothesis (p < .001, α∗ = .04).

For hypothesis test type B, it appears that for all S bootstraps p = 1.

This result implies that in none of the S bootstraps, the constraint parameter

estimates violated the inequality constraints imposed on the regression

coefficients. Also, for the observed data set p = 1. We wanted α to

have the property P(p < .05|H0) = .05, but for this example we observed

P(p < .05|H0) = 0. This simulation study shows that that we can not make

an incorrect conclusion with respect to hypothesis test type B.

Thus, the association with deviant peers is the most prominent predictor

of problem behaviour. A visual inspection of Table 5.3 confirms this

conclusion since the unconstraint estimate β21 is larger than the unconstraint

estimates of γ21, γ22 and γ23.

5.6 Concluding Remarks

Traditional hypothesis tests and model selection criteria are not equipped

to deal with informative hypotheses formulated in terms of inequality

constraints among the parameters of a structural equation model. In this

paper we presented a solution for this problem using Mplus. Some issues

that need further elaboration are now discussed.

First, p-values are often used in SEM and are evaluated using the

traditional alpha level of .05. Using the double bootstrap procedure we

evaluated the frequency properties of the plug-in p-values resulting from our

method. These results show clearly that the distribution of the p-values is

not always uniform and calibration is needed. This is especially the case

when evaluating hypotheses of type B.
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Second, in this paper we used rather simple SEM models. However,

there are no technical limitations to use inequality constraints for more

complicated models in Mplus, for example including latent effects, second

order effects or categorical variables. In Figure 5.8 a hypothetical SEM model

is shown with one latent variables, and seven observed variables. For this

model constraints could be imposed on for example γ1 . . . γ3. In this paper

we only discussed informative hypotheses with inequality constraints of the

type γ1 > γ2 > γ3. There are however no technical limitations to evaluate an

informative hypothesis consisting of combinations of equality and inequality

constraints of the form γ1 > γ2 = γ3, {γ1 − γ2} > 2, or {γ1 − γ2} < γ3 > 1.

A limitation of the procedure is that computational time can be

substantial. To compute the examples in this paper we used pentium

computers (3.20MHz) containing 2 duo-processors (Mplus can deal with

multiple processors) with 1 GB memory. The models for Example 1 and

3 took approximately two days to compute, but Example 2 took more than

two weeks.

So, although inequality constraints can be tested using the approach

proposed, further research should focus on decreasing computation time. We

therefore recommend to implement our procedure in Mplus. If this can be

achieved, the method will be attractive for researchers like Deković et al.

(2004), because they will be able to evaluate informative hypotheses easily

and quickly.
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Figure 5.8: Hypothetical SEM model
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Abstract

The posterior predictive Deviance Information Criterium (posterior DIC) was proposed as

a model selection tool by Spiegelhalter et al. (2002). In many types of statistical modeling

inequality constraints are imposed between the parameters of interest. As we will show

in this paper, the posterior DIC fails when comparing inequality constrained hypotheses.

In this paper we will derive the prior DIC and show that it also fails when comparing

inequality constrained hypotheses. However, it will be shown that a modification of

the prior predictive loss function that is minimized by the DIC, and consequently a

modification of the prior DIC does have the properties needed in order to be able to

compare inequality constrained hypotheses. This new criterion will be called the Prior

Information Criterium (PIC) and will be illustrated and evaluated using simulated data

and examples.
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Within the Bayesian framework, there are two perspectives on model

selection: a prior predictive approach (e.g. Box, 1980; Kass & Raftery,

1995) and a posterior predictive approach (e.g. Gelman, Carlin, Stern &

Rubin, 2004; Gelman et al., 1996). Spiegelhalter, Best, Carlin and Van Der

Linde (2002) derived the posterior predictive Deviance Information Criterium

(posterior DIC) to choose between a set of competing hypotheses. In this

paper we will derive the prior predictive Deviance Information Criterium

(prior DIC).

In many types of statistical modeling inequality constraints are imposed

between the parameters of interest (Barlow et al., 1972; Hoijtink, Klugkist

& Boelen, 2008; Robertson et al., 1988; Silvapulle & Sen, 2004; Van de

Schoot, Hoijtink & Deković, 2010). More specifically, model parameters such

as means or regression coefficients can be constrained to being greater or

smaller than either a fixed value or other means or regression coefficients.

Phrases like “the mean outcome in both experimental groups is expected to

be larger than in the control group” and “women score higher than men in

each condition” can be found in many papers. These specific expectations

may be derived from theories, empirical evidence, or both.

As we will show in this paper, the posterior DIC can not be used

to choose between a set of inequality constrained hypotheses. We also

show that the prior DIC can only be used to choose between a set of

constrained hypotheses if the population is fully in agreement with the

inequality constrained hypothesis, but fails when the population is not in

agreement with the constraints. To accommodate for this, the predictive

loss function is modified. This new loss function can be approximated by

the Prior Information Criterion (PIC) which can be used to evaluate a set

of inequality constrained hypotheses. Simulated data and examples will be

used to illustrate the performance of the PIC.
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6.1 behaviour of The Posterior Predictive DIC in

Constrained Model Selection

The posterior DIC is proposed in Spiegelhalter et al. (2002) as a Bayesian

criterion for minimizing the posterior predictive loss. The posterior DIC

has an important role in statistical model comparison. In this section we

briefly show how the posterior DIC is obtained (based on the derivation of

Spiegelhalter et al.), thereafter we show with two simple examples that the

posterior DIC fails when comparing inequality constrained hypotheses.

6.1.1 Posterior Predictive DIC

The posterior DIC minimizes the posterior expectation of the expected loss

(Gelman et al., 2004). It can be seen as the error that is expected when a

statistical model based on the observed data set y is applied to a future data

set x. Let f(·) denote the likelihood, then the expected loss is given by

Ef(x|θ∗)[−2 log f(x | θ̄y)] , (6.1)

where −2 log f(·) is the loss function of a future data set x in which θ̄y is

the expected a-posteriori estimate of the model parameters θ based on the

observed data set y. If we would know the true parameter value θ∗, the

expectation in (6.1) could be computed. However, since these are unknown,

the posterior DIC takes the posterior expectation of (6.1) resulting in the

posterior expectation of the expected loss given by

Eg(θ|y)

{
Ef(x|θ)

[
−2 log f(x | θ̄y)

]}
=

−2 log f(y | θ̄y) + Eg(θ|y)

{
c(y,θ, θ̄y)

}
≈

−2 log f(y | θ̄y) + 2
[
−2log f(y | θ) + 2 log f(y | θ̄y)

]
=

posterior DIC , (6.2)

where Eg(θ|y) denotes the expectation with respect to the posterior distri-

bution g(θ | y) and the term between square brackets is the penalty term,
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often interpreted as the effective number of parameters. Let θ1 . . .θL be L

draws from the posterior distribution g(θ | y), then −2log f(y | θ) can be

estimated by
L∑
l=1

−2 log f(y | θl)
L

, (6.3)

and −2 log f(y | θ̄y) can be estimated by

−2 log f(y |
L∑
l=1

θl1
L
, . . . ,

L∑
l=1

θlk
L

) , (6.4)

where k (k = 1, . . . , K) index the parameters in θ.

6.1.2 Inequality Constrained Hypotheses: Example 1

To show that the posterior DIC fails when evaluating a set of inequality

constrained hypotheses, consider an example where persons from two groups

receive a score on one dependent variable, yi (i = 1, . . . , N):

yi = µ1di1 + µ2di2 + εi , (6.5)

where µ1 and µ2 denote the mean score on y for group 1 and 2 respectively

and where the residuals εi are assumed to be normally distributed N(0, σ2).

The group membership of a person is denoted by dig ∈ 0, 1, where 1 and 0

denote that a person is either a member or not a member of group g. Suppose

we want to evaluate two hypotheses: H0 : µ1, µ1 and H1 : µ1 < µ2. There

are situations where the posterior DIC is unable to distinguish between H0

and H1.

Let g0(µ1, µ2, σ
2|y) = g1(µ1, µ2, σ

2|y) × c, where c denotes the constant

needed to normalize g1(µ1, µ2, σ
2|y) because it has density zero for all

combinations of µ1 and µ2 not in agreement with H1. The subscript in

g0(·) and g1(·) refers to the posterior distribution of H0 and H1 respectively.

Then, for µ2−µ1 →∞, g0(µ1, µ2, σ
2|y) - g1(µ1, µ2, σ

2|y)→ 0. That is, if the

population from which the data is generated is strongly in agreement with
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H1, the difference between the posterior distributions for H0 and H1 becomes

zero. Since, the posterior DIC is computed using samples of µ1, µ2 and σ2

obtained from the posterior distribution, for µ2−µ1 →∞, samples obtained

under H0 and H1 are exchangeable. Consequently, DICH0 and DICH1 have

the same values. This result is counterintuitive and unwanted because H1

is more parsimonious than H0 and hence it contains more information (e.g.

Sober, 2006), so it should be preferred by the DIC.

6.1.3 Inequality Constrained Hypotheses: Example 2

Consider a second example with two dependent variables (denoted by y1i and

y2i for i = 1, . . . , N),

y1i = µ1 + εi1

y2i = µ2 + εi2 ,
(6.6)

where the residuals are assumed to be normally distributed[ εi1
εi2

]
∼ N

(
0,Σ

)
,Σ =

[ σ2
y1

ρσy1σy2
ρσy1σy2 σ2

y2

]
. (6.7)

Suppose we want to evaluate two hypotheses: H0 : µ1, µ2 and H1 : µ1 >

0; µ2 > 0. Analogously to the previous example, also in this situation the

posterior DIC is unable to distinguish between these hypotheses. Again we

assume g0(µ1, µ2,Σ|y1,y2) = g1(µ1, µ2,Σ|y1,y2)× c. Then, for µ1 →∞ and

µ2 →∞, g0(µ1, µ2,Σ|y1,y2)− g1(µ1, µ2,Σ|y1,y2)→ 0. Since, the posterior

DIC is computed using samples of µ1, µ2 and Σ obtained from the posterior

distribution, for µ1 → ∞ and µ2 → ∞, samples obtained under H0 and H1

are exchangeable. Analogously to the previous example, DICH0 and DICH1

have the same values.

6.2 Derivation of Prior Predictive DIC

In this section we show how to obtain the prior DIC based on the derivation

of the posterior DIC presented in Spiegelhalter et al. (2002). The point of
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departure for the prior DIC is the same as for the posterior DIC, namely the

expected loss given in (6.1). However, to deal with the unknown parameters

θ∗, we take the expectation with respect to the prior distribution, h(θ),

instead of the posterior expectation of the expected loss:

Eh(θ)

{
Ef(x|θ)

[
−2 log f(x | θ̄y)

]}
=

−2 log f(y | θ̄y) + Eh(θ)

[
c(y,θ, θ̄y)

]
. (6.8)

The main problem now, is to find an expression for the second term on the

right hand side in (6.8). Using D(a,b) = −2 log f(a | b), c(y,θ, θ̄y) in (6.8)

can be rewritten to

c(y,θ, θ̄y) = Ef(x|θ)

[
D(x, θ̄y)−D(y, θ̄y)

]
= Ef(x|θ)

[
D(x, θ̄y)−D(x,θ)

]
+ Ef(x|θ)

[
D(x,θ)−D(y,θ)

]
+ D(y,θ)−D(y, θ̄y) . (6.9)

Now, D(x, θ̄y) in (6.9) can be approximated by taking a second order Taylor

expansion about θ,

D(x, θ̄y) ≈ −2 log f(x | θ)− 2

{
∂ log f(x|θ)

∂θ

}T (
θ̄y − θ

)
−

−
(
θ̄y − θ)T

{
∂2 log f(x|θ)

∂θ∂θT

}(
θ̄y − θ

)
. (6.10)

Since −2 log f(x | θ) is equal to D(x,θ) and the expectation of the second

term on the right hand side of (6.10) with respect to f(x | θ) is zero (p. 604

Spiegelhalter et al., 2002),

Ef(x|θ)

[
D(x, θ̄y)−D(x,θ)

]
≈

Ef(x|θ)

[
−
(
θ̄y − θ

)T{∂2 log f(x|θ)

∂θ∂θT

}(
θ̄y − θ

)]
. (6.11)

The expression on the right hand side of (6.11) can be rewritten as tr
{
I(θ)(

θ̄y− θ
)(
θ̄y− θ

)T}
and since x and y stem from the same data generating
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mechanism, the Fisher information matrix I(θ) can be approximated by the

observed Fisher information matrix, I(θ̄y) (p. 604 Spiegelhalter et al., 2002),

where I(θ̄y) = −∂2 log f(y | θ̄y)/∂θ∂θT . Using E{tr(·)} = tr{E(·)}, the

prior expectation of c(y,θ, θ̄y) can now be approximated by:

Eh(θ)

[
c(y,θ, θ̄y)

]
≈ tr

{
I(θ̄y)Λ

}
+

+Eh(θ)

{
Ef(x|θ)

[
D(x,θ)−D(y,θ)

]}
+ d ,(6.12)

where Λ = Eh(θ)[(θ̄y − θ)(θ̄y − θ)T ] denotes the variation in the prior

distribution around θ̄y. The last term on the right hand side of (6.12) is

defined as

d = Eh(θ)

[
D(y,θ)

]
− Eh(θ)

[
D(y, θ̄y)

]
= Eh(θ)

[
D(y,θ)

]
−D(y, θ̄y) . (6.13)

To show that tr
{
I(θ̄y)Λ

}
is approximately equal to d, we use a second order

Taylor expansion about θ̄y:

Eh(θ)

[
D(y,θ)

]
≈ Eh(θ)

[
D(y, θ̄y)− 2

{
∂ log f(y | θ̄y)

∂θ

}T (
θ − θ̄y

)
−

−
(
θ − θ̄y

)T{∂2 log f(y | θ̄y)
∂θ∂θT

}(
θ − θ̄y

)]
. (6.14)

Since, θ̄y → θ̄ML for n → ∞, −2

{
∂ log f(y|θ̄y)

∂θ

}T
is asymptotically zero

(Gelman et al., 2004). This way, Eh(θ)

[
D(y,θ)

]
can now be approximated

by

Eh(θ)

[
D(y,θ)

]
≈ D(y, θ̄y) + Eh(θ)

[
tr
{
−∂

2 log f(y | θ̄y)
∂θ∂θT

(
θ − θ̄y

)(
θ − θ̄y

)T}]
≈ D(y, θ̄y) + tr

{
I(θ̄y)Λ

}
. (6.15)

To show that tr
{
I(θ̄y)Λ

}
is approximately equal to d, D(y, θ̄y) is subtracted

from both sides of (6.15)

tr
{
I(θ̄y)Λ

}
≈ Eh(θ)

[
D(y,θ)

]
−D(y, θ̄y) = d . (6.16)
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Equation (6.12) then becomes

Eh(θ)

[
c(y,θ, θ̄y)

]
≈ Eh(θ)

{
Ef(x|θ)

[
D(x,θ)−D(y,θ)

]}
+

+2
{

Eh(θ)

[
D(y,θ)

]
−D(y, θ̄y)

}
. (6.17)

The prior DIC can now be written as

Eh(θ)

{
Ef(x|θ)

[
D(x,θ)

]}
−D(y, θ̄y) + Eh(θ)

[
D(y,θ)

]
, (6.18)

whereas, using the same notation, the posterior DIC can be written as

D(y, θ̄y) + 2
{

Eg(θ|y)

[
D(y,θ)

]
−D(y, θ̄y)

}
. (6.19)

Note the two major differences between the prior and posterior DIC: (i) the

first term on the right hand side of (6.18) does not have a corresponding

part in the posterior DIC and (ii) the third term on the right hand side of

(6.18) is the expectation with respect to the prior distribution whereas the

corresponding term in (6.19) is the expectation with respect to the posterior

distribution.

In what follows we will first show in Section 6.3 how to choose h(θ).

Thereafter, we prove in Section 6.4 that Eh(θ)

{
Ef(x|θ)

[
D(x,θ)

]}
is constant

when comparing inequality constrained hypotheses. In Section 6.5 we inspect

the behaviour of the prior DIC with respect to the evaluation of inequality

constrained hypotheses for the examples presented in Section 6.1.2 and 6.1.3.

In Section 6.6 we will introduce a new loss function and a new model

selection tool for the evaluation of inequality constrained hypotheses, the

Prior Information Criterium (PIC). Finally in Section 6.7 the PIC is used in

an application.

6.3 Prior Distributions for Constrained

Hypotheses

An important issue when computing the prior DIC is the specification of

the prior distribution h(θ). A key characteristic is that constraints can be
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incorporated in h(θ) and we show how to do so in this section. Finally,

we provide the prior distributions we will use to evaluate Example 1 and 2

introduced in Section 6.1.2 and 6.1.3, respectively.

6.3.1 Truncated Prior Distribution

We want to use the prior DIC to choose between a set of hypotheses

that differ in the specification of the constraints between the parameters

of interest. In order to incorporate the constraints in the prior distribution,

we use the encompassing prior approach as was proposed by Klugkist et al.

(2005); Mulder, Hoijtink and Klugkist (2009); Mulder, Klugkist et al. (2009).

Let h(θ) be the prior distribution for the model parameters θ. Further-

more, let Ht(t = 0, . . . , T ) denote a hypothesis specified using constraints and

let H0 denote an unconstrained hypothesis. All hypotheses Ht are nested in

H0, therefore ht(θ) is proportional to h0(θ), with

ht(θ) :

{
c−1
t h0(θ) ifθ ∈ Ht

0 otherwise ,
(6.20)

where ct is a normalization constant given by

ct =

∫
θ∈Ht

h0(θ)∂θ . (6.21)

Using this encompassing prior approach only the prior distribution for H0

needs to be specified. This is in agreement with the principle of compatibility

which is best illustrated using a quote from Leucari and Consonni (2003) “If

nothing was elicited to indicate that the two priors should be different, then

it is sensible to specify [the prior of the constrained hypothesis] to be, ...,

as close as possible to [the prior of the unconstrained hypothesis]. In this

way the resulting Bayes factor should be least influenced by dissimilarities

between the two priors due to differences in the construction processes, and

could thus more faithfully represent the strength of the support that the data

lend to each [hypothesis]” (see also, Roverato & Consonni, 2004).
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Now, let θ = {θc,θn} where θc denotes model parameters subjected to

constraints and θn denotes model parameters that are unconstrained, then

h0(θ) = h0(θc)h0(θn). Let k (k = 1, . . . , K) index the parameters in θc, then,

assuming prior independence between both groups of parameters,

h0(θc) =
K∏
k=1

h0(θck) . (6.22)

The parametrization of h0(θck) and h0(θn) depend on the statistical model

used. In the current paper we will use a scaled inverse chi-square distribution

or an inverse Wishart distribution for h0(θn), and for h0(θck) normal prior

distributions will be used.

Choosing the parameters of the prior distribution in constrained hypo-

theses selection is for example explained in Mulder, Hoijtink and Klugkist

(2009) or in Mulder, Klugkist et al. (2009). We will not repeat their

elaboration, but we will limit ourselves to the specification of h0(θck) and

h0(θn) for the examples used in the current paper.

An important characteristic of the prior distribution for h0(θck) is that

the means of the prior distribution need to be located at the boundary of

the inequality constrained parameter space. Also, the prior variance need to

be restricted in the same way as the prior means. As was shown by Mulder,

Hoijtink and Klugkist (2009) only in this situation the prior operationalizes

the complexity of a model adequately (for more details see: Mulder, Hoijtink

& Klugkist, 2009; Mulder, Klugkist et al., 2009). In the sequel two examples

and an application will be used to illustrate this is also the case for our own

model selection tool.

To account for this important feature of the prior distribution we will

use a simple data-based procedure to obtain values for the parameters of the

prior distribution. Our procedure is in line with the training data approach

and the fractional Bayes factors as is presented in J. Berger and Pericchi

(1996, 2004); O’Hagan (1995); Perez and Berger (2002). There are also

other methods available, such as described in Klugkist et al. (2005); Mulder,

Hoijtink and Klugkist (2009); Mulder, Klugkist et al. (2009). In the current



6.3. PRIOR DISTRIBUTIONS FOR CONSTRAINED HYPOTHESES 113

paper we will not compare different specifications of h0(θck) but limit ourself

to our simple method that will be illustrated in the sequel.

6.3.2 Prior Specification for Example 1 and 2

According to Mulder, Hoijtink and Klugkist (2009), the prior distribution

for Example 1 should be given by

h0(µ1, µ2, σ
2) = N(µ1|µ0, τ

2
0 )×N(µ2|µ0, τ

2
0 )× Invχ2(σ2|υ0, σ

2
0), (6.23)

where µ0 is the prior mean and τ 2
0 is the prior variance. Note that if µ1 and

µ2 have the same prior distribution, then µ0 will be located on the boundary

of the inequality constrained parameter space. In our rather simple solution,

µ0 and τ 2
0 will be based on a fraction of the information in the data with

respect to the overall mean that corresponds to a minimal training sample

of size 2:

µ0 =
N∑
i=1

yi
N
, (6.24)

and

τ 2
0 =

N∑
i=1

(yi − µ0)2

N
× 1

2
, (6.25)

where the correction term of 1
2

renders the expected variance of the mean

in a minimal training sample of size 2. The scaled inverse chi squared

prior distribution for σ2 in (6.23), has υ0 degrees of freedom and has scale

parameter σ2
0, with υ0 = 2 and σ2

0 = τ 2
0 × 2. Our straightforward solution to

obtain reasonable values for υ0 and σ2
0 such that this prior is vague.

According to Mulder, Hoijtink and Klugkist (2009), for Example 2,

h0(µ1, µ2,Σ) = MVN(µ|µ0, τ
2
0 )×W−1(Σ|υ0,Σ0), (6.26)

where µ0 = {0, 0}, and τ 2
0 is a diagonal matrix with variances τ 2

01 and τ 2
02.

Note that we assume independence on the off-diagonal element in (6.27) and

(6.29) in line with Mulder, Hoijtink and Klugkist (2009).
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The specification of µ0 is somewhat different because of the use of the

constants in hypothesis H1 : µ1 > 0; µ2 > 0. In this situation, the prior

should be centered at the boundary of the admissible parameter space.

In our case this is zero. This is because zero is the boundary of the

inequality constrained parameter space (see, Mulder, Hoijtink & Klugkist,

2009; Mulder, Klugkist et al., 2009).

For τ 2
0 and Σ0 will be determined using the expected information in a

training sample of size 2. τ 2
0 is given by[

τ 2
01 0

0 τ 2
02

]
, (6.27)

where

τ 2
0· =

N∑
i=1

(y·i)
2

N
× 1

2
. (6.28)

For the Inverse Wishart, υ0 are degrees of freedom (υ0 = 2) and Σ0 is the

scale matrix with [
σ2

01 0

0 σ2
02

]
, (6.29)

where

σ2
0· =

2

N

N∑
i=1

(y·i)
2 . (6.30)

6.4 Simplifying the Prior DIC for Constrained

Hypotheses

As we will prove in this section, Eht(θ)

{
Ef(x|θ)

[
D(x,θ)

]}
in (6.18) is

constant between constrained hypotheses. In this context the prior DIC

reduces to

prior DIC = C + 2 log f(y | θ̄y) + Eht(θ)

[
−2 log f(y | θ)

]
, (6.31)

where C = Eht(θ)

{
Ef(x|θ)

[
−2 log f(x | θ)

]}
and can be ignored for all Ht.
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6.4.1 Example 1 Continued

For Example 1, ht(θc)ht(θu) = ht(µ1, µ2)ht(σ
2) where ht(σ

2) is the same, but

ht(µ1, µ2) differs across hypotheses because of the normalization of the prior

distribution in Equation (6.20). In the remainder of this subsection we drop

the subscript t to simplify the notation. We will prove that

Eh(σ2)h(µ1,µ2)

{
Ef(x|µ1,µ2,σ2)

[
−2 log f(x | µ1, µ2, σ

2)
]}

is constant over all hypotheses under consideration. When comparing

constrained hypotheses we have to prove that the term within accolades

is independent of µ1, µ2, and σ2. First using

f(x | µ1, µ2, σ
2) =

( 1√
2πσ2

)N
exp
[
−1

2

∑N
i=1(xi − µ1d1 − µ2d2)2

σ2

]
, (6.32)

the term being constant can be written as

∫
σ2

∫
µ1,µ2

∫
x

2N log
√

2πσ2 ∂f(x | µ1, µ2, σ
2)∂h(µ1, µ2)∂h(σ2)+ (6.33)

+

∫
σ2

∫
µ1,µ2

∫
x

N∑
i=1

(xi − µ1d1 − µ2d2)2

σ2
∂f(x | µ1, µ2, σ

2)∂h(µ1, µ2)∂h(σ2) .

The first term of (6.33) is independent of µ1, µ2, and since h(σ2) is the same

for each hypothesis, the second term integrated over σ2 in (6.33) should be

constant for every value for σ2 to render (6.33) constant. Let x = {x1,x2}
denote subgroups with sample sizes N1 and N2 for x1 and x2, respectively.

Omitting the integral over σ2, we can now rewrite the second term in (6.33)

to ∫
µ1

∫
x1

N1∑
i=1

(xi − µ1)2

σ2
∂f(x1 | µ1, σ

2)∂h(µ1)+ (6.34)

+

∫
µ2

∫
x2

N2∑
i=1

(xi − µ2)2

σ2
∂f(x2 | µ2, σ

2)∂h(µ2) .
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Note, that for the first group in (6.34) xi ∼ N(µ1, σ
2) and for the second

group xi ∼ N(µ2, σ
2). Using x∗i = xi−µ1

σ2 with x∗i ∼ N(0, 1) in the first group,

and x∗i = xi−µ2
σ2 with x∗i ∼ N(0, 1) in the second group, the integral over µ1

and µ2 drop out of (6.34):∫
x∗1

N∑
i=1

(x∗i )
2 ∂f(x∗i | 0, 1) +

∫
x∗2

N∑
i=1

(x∗i )
2 ∂f(x∗i | 0, 1) . (6.35)

Consequently, for every value of σ2, (6.34) is independent of µ1, µ2. That is,

for this example, Eh(σ2)h(µ1,µ2)

{
Ef(·)

[
−2 log f(·)

]}
is constant over constrai-

ned hypotheses.

6.4.2 Example 2 Continued

For Example 2, ht(θc)ht(θu) = ht(µ1, µ2)ht(Σ) where ht(Σ) is the same, but

ht(µ1, µ2) differs across hypotheses because of the normalization of the prior

distribution in Equation (6.20). In the remainder of this subsection we drop

the subscript t to simplify the notation. We now have to prove that the term

between accolades in

Eh(µ1,µ2)h(σx1,σx2,ρ)

{
Ef(·)

[
−2 log f(x1,x2 | µ1, µ2, σx1, σx2, ρ)

]}
(6.36)

is constant over hypotheses for µ1, µ2, and Σ. Using

f(x1,x2 | µ1, µ2, σx1, σx2, ρ) =
( 1

2πσx1σx2
√

1− ρ2

)N
exp
[
− 1

2(1− ρ2){∑N
i=1(x1i − µ1)2

σ2
x1

+

∑N
i=1(x2i − µ2)2

σ2
x2

−

− 2ρ
∑N

i=1(x1i − µ1)(x2i − µ2)

σx1σx2

}]
, (6.37)

(6.36) can be written as the sum of∫
σx1,σx2,ρ

∫
µ1,µ2

∫
x1,x2

2N log 2πσx1σx2
√

1− ρ2

∂f(x1,x2 | µ1, µ2, σx1, σx2, ρ)∂h(µ1, µ2)∂h(σx1, σx2, ρ) , (6.38)
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and∫
σx1,σx2,ρ

∫
µ1,µ2

∫
x1,x2

1

(1− ρ2){∑N
i=1(x1i − µ1)2

σ2
x1

+

∑N
i=1(x2i − µ2)2

σ2
x2

− 2ρ
∑N

i=1(x1i − µ1)(x2i − µ2)

σx1σx2

}
∂f(x1,x2 | µ1, µ2, σx1, σx2, ρ)∂h(µ1, µ2)∂h(σx1, σx2, ρ) . (6.39)

Since h(Σ) is the same for each hypothesis, the integrals in (6.39) integrated

over σx1, σx2, ρ should be constant for every value of h(Σ) to render

(6.39) constant. Also, in this situation (6.38) is constant over constrained

hypotheses. Using x∗1i = x1i−µ1
σ

and x∗2i = x2i−µ2
σ

, (6.39) can be rewritten into∫
ρ

∫
x∗1,x

∗
2

N∑
i=1

1

(1− ρ2)

{
(x∗1i)

2 + (x∗2i)
2 − 2ρ2x∗1ix

∗
2i

}
∂f(x∗1,x

∗
2 | 0, 0, 1, 1, ρ)∂(ρ) . (6.40)

Consequently, for every Σ, (6.39) is independent of µ1 and µ2. That is, for this

example, Eh(µ1,µ2)h(σx1,σx2,ρ)

{
Ef(·)

[
−2 log f(·)

]}
is constant over constrained

hypotheses.

6.4.3 Multivariate Models

Finally, consider a multivariate example with two groups with mean scores

on two dependent variables:

y1i = µ11dig1 + µ12dig2 + ε1i

y2i = µ21dig1 + µ22dig2 + ε2i ,
(6.41)

where µ1· and µ2· denote the mean score on y1 and y2 respectively and where

µ·1 and µ·2 denote the mean for group 1 and 2 respectively. Again, group

membership of a person is denoted by dig ∈ 0, 1 and the residuals are assumed

to be normally distributed with[ εi1
εi2

]
∼ N

(
0,Σ

)
,Σ =

[ σ2
y1

ρσy1σy2
ρσy1σy2 σ2

y2

]
. (6.42)
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Note that this example is a combination of (6.5) and (6.6). Also for

constrained hypotheses in this multivariate example it can be proved that

Eht(µ11,µ12,µ21,µ22)ht(Σ)

{
Ef(·)

[
−2 log f(·)

]}
is constant over constrained hypotheses. Even so, using the same steps

as presented in Section 6.4.1 and 6.4.2, it can be proved for the general

multivariate normal linear model Press (2005, pp. 252-257), that

Eht(θ)

{
Ef(x|θ)

[
−2 log f(x | θ)

]}
is constant over constrained hypotheses.

6.5 Evaluating Inequality Constrained Hypotheses

In this section we show how to compute the prior DIC. We also show that

the prior DIC can be used to choose between a set of constrained hypotheses

if the population from which the data is generated is fully in agreement with

the most constrained hypothesis, where the posterior DIC fails to do so.

Furthermore, we show that the prior DIC also fails to choose between a set

of inequality constrained hypotheses if the population is not in agreement

with the constrained hypothesis. To accommodate for this inconvenience, we

will show in the next section that the prior predictive loss that is estimated by

the prior DIC needs to be adjusted in order to be able to evaluate inequality

constrained hypotheses.

6.5.1 Estimation of the Prior DIC

Let θ1 . . .θL be L draws from the posterior distribution, then D(y, θ̄y), in

Equation (6.31) can be estimated by

2 log f(y | 1

L

L∑
l=1

θl1, . . . ,
1

L

L∑
l=1

θlk) . (6.43)
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Furthermore, let θ1 . . .θK be K draws from the prior distribution, then

Eht(θ)

[
D(y,θ)

]
in Equation (6.31) can be estimated by

1

K

K∑
k=1

-2 logf(y | θk) . (6.44)

We will show for each example how both can be obtained, but we start with

a close examination of the behaviour of the prior DIC for Example 1 for

inequality constrained hypotheses.

6.5.2 Example 1 continued

To show that the prior DIC can be used to choose between a set of

constrained hypotheses if the population from which the data is generated

is fully in agreement with the most constrained hypothesis, whereas the

posterior DIC fails to do so, we reconsider Example 1, see Section 6.1.2

with hypotheses H0 : µ1, µ2 and H1 : µ1 < µ2.

If we would compare H0 and H1 with the prior DIC, the first term of the

prior DIC given in Equation (6.31) is constant, as was shown in Section 6.4.1.

Now, consider the same situation as in Section 6.1.2 where the population

from which the data was generated is strongly in agreement with H1. In this

case, the second term in Equation (6.31) does also not differ between H0 and

H1, because for µ1 − µ2 → ∞, µ̄1|H0 → µ̄1|H1 and µ̄2|H0 → µ̄2|H1. So, the

third term, Eht(µ1,µ2,σ2)

[
D(y, µ1, µ2, σ

2)
]
, should make the difference between

H0 and H1.

Since samples of µ1 and µ2 are taken from the prior distribution h0(µ1, µ2,

σ2), see Equation (6.44), and since h0(µ1, µ2, σ
2) 6= h1(µ1, µ2, σ

2) because

of the normalization of the prior distribution according to Equation (6.20),

samples from the prior distribution are different for H0 and H1. For µ1 −
µ2 → ∞, the third term of (6.31), when computed for H0 is based on more

large values of −2 log f(y | µ1, µ2, σ
2) then when it is computed for H1.

Consequently, the third term of (6.31) for H1 is smaller then the third term

of (6.31) for H0.
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The actual computation of the second term of (6.31) for H0 and H1 can

be done using samples from g0(µ1, µ2, σ
2|y) and g1(µ1, µ2, σ

2|y), respectively,

that can be used in (6.43). These samples can be obtained using the Gibbs

sampler for g0(·) (see, Gelman et al., 2004) and the constrained Gibbs sampler

for g1(·) (see, Klugkist et al., 2005). The third term of (6.31) can be

computed using a sample from the prior distribution of the hypotheses under

investigation which subsequently can be used in (6.44).

We also consider an equality constrained hypothesis to investigate the

performance of the posterior and prior DIC, H2 : µ1 = µ2. For this

hypothesis, µ1 and µ2 in (6.32) can be replaced by µ, h(µ) has mean µ0

and variance 1
1/τ20 +1/τ20

and g2(µ, σ2|y) is proportional to this likelihood and

this prior distribution. For H2 both (6.43) and (6.44) are computed from the

posterior and prior distribution, respectively.

A simulation study was performed where data sets from seven different

populations were considered and the three hypotheses were evaluated with

the prior and posterior DIC, see Figure 6.1. Note that the first four data

sets are in agreement with the constraints of H1, whereas the last three data

sets are constructed in such a way that they violate the constraints of H1.

The difference between the seven data sets is that the size of the difference

between the two group means varies from small (difference of .02) to large

(difference of 2). Data were constructed in such a way that the sample means

and variance are exactly equal to the population parameters (with σ2 = 1

and n = 20 for each group). The specification of µ0, τ 2
0 , υ0 and σ2

0 is described

in Section 6.3.2. For population 1 with µ1 = −1 and µ2 = 1, the priors are

µ0 = 0, τ 2
0 = 0.97, υ0 = 2 and σ2

0 = 1.95.

Inspection of Figure 6.1 leads to two important observations: (1) there

are situations that the posterior DIC fails to correctly distinguish between

H0, H1 and H2; (2) there are also situations where the prior DIC fails to

correctly distinguish between H0, H1 and H2.

First, consider the performance the posterior DIC. When looking at

populations 1-5 in Figure 6.1, it can be seen that the the values for the
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posterior DIC for both H0 and H1 are equal. Hence, the posterior DIC can

not distinguish H0 and H1, which is counterintuitive because the population

values satisfy the constraints of H1. For population 4 and 5, the two data sets

with the smallest difference in sample means, the value of the posterior DIC

for H2 is lowest, which makes sense because the means are approximately

equal. When the means do not fit the constraints of H1, populations 6

and 7, the values for the posterior DIC for H0, H1 and H2 are in line with

what would be expected: the lowest DIC value for H0 followed by H2 and

H1, respectively. In sum, the posterior DIC fails to distinguish between

hypotheses H0 and H1 when the data is strongly in agreement with the most

constrained hypothesis, H1.

Second, consider the performance the prior DIC. In contrast to the

posterior DIC, the prior DIC is able to correctly distinguish between H0 and

H1 when the data are in agreement of the constraints of H1, see populations

1-3 in Figure 6.1, where the the prior DIC is lowest for H1. For the data

with the smallest differences in sample means (population 4 and 5), the prior

DIC is lowest for H2. When the constraints are not supported by the data,

populations 6-7, the value for H0 should be the lowest value, but as can be

seen in Figure 1, this is not the case! So, when the data is fully in agreement

with H1 the the prior DIC outperforms the the posterior DIC, but when the

data do not support H1, the prior DIC fails to correctly distinguish H0 from

H1 and H2.

In conclusion, neither the prior DIC, nor the posterior DIC are proper

model selection tools for the evaluation of inequality constrained hypotheses.

In the next section the prior predictive loss function will be adjusted such

that its estimate, the PIC, can be used to select the best of a set of equality

and inequality constrained hypotheses.
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6.6 A New Loss Function for the Evaluation of

Inequality Constrained Hypotheses

In this section we take a closer look at why the prior DIC fails and how this

problem can be solved by introducing a new loss function..

6.6.1 The Problem

Consider Figure 6.2, where estimates of (6.43) and (6.44) are displayed for

all populations described in the previous section. First, as described in the

previous section, a problem arises for population 6 and 7 where H1 instead

of H0 has smaller values of the prior DIC see Figure 6.1. Consider the prior

expectation of the expected loss given in (6.1), which is approximated by the

prior DIC as was shown in Section 6.2:

Eht(θ)

{
Ef(x|θ)

[
−2 log f(x | θ̄y)

]}
(6.45)

≈ 2 log f(y | θ̄y) + Eht(θ)

[
−2 log f(y | θ)

]
.

Note that this loss function determines how well replicated data fit a certain

hypothesis, that is, how good θ̄y is a summary of x. However, this loss

function does not accommodate ‘bad’ fitting hypotheses, that is, if for a

hypothesis θ̄y is not a good summary of y, this will not be detected by the

loss function in (6.45).

Consider the situation of Example 1 and suppose that a population is not

in agreement with the inequality constrained hypothesis, H1 : µ1 < µ2, for

example Population 7 with population means µ1 = 0.5;µ2 = −0.5. In this

situation the prior DIC chooses H1 as the best hypothesis, see Figure 6.1.

This result is unwanted because in the data µ1 > µ2. This result is due to

the fact that the prior µ1 ≈ 0;µ2 ≈ 0 because of the truncation of the prior

distribution. Subsequently for the computation of (6.45), data is replicated

based on θ from a prior distribution with µ0 = 0. These replicated data are

adequately summarized by µ1 and µ2. However, what is not accounted for in
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(6.45) is that the observed data y are not adequately summarized by µ1 and

µ2. This leads to situations where the loss function in (6.45) has a preference

for ‘bad’ fitting inequality constrained hypotheses.

6.6.2 The Solution

The solution of the aforementioned problem is to adjust the loss function

that is used to select the best hypothesis such that it also accounts for the

agreement between θ̄y and y. The loss function in (6.45) can be rewritten as

−2 Eht(θ)

{
Ef(x|θ)

[
log f(x | θ̄y) + log f(y | θ̄y)

]}
(6.46)

≈ Eht(θ)

[
−2 log f(y | θ)

]
.

The new loss function determines not only how well replicated data fit with

a certain hypothesis (the first term between accolades in 6.46), but it also

determines how well a hypothesis fits the data (the second term between

accolades in 6.46). It is approximated by the third term of the prior DIC

and is our final model selection tool, to be called Prior Information Criterium

(PIC). In Figure 6.2 the PIC values for populations 1-7 of Example 1 are

shown. As can be seen, the PIC chooses for H1 as the best hypothesis in

situations where this hypothesis is true in the population, see populations

1-3. The PIC chooses for H2 as the best hypothesis where this hypothesis

is strongly supported by the population values, see populations 4 and 5.

Finally, the PIC chooses for the unconstrained hypothesis, H0, where the

(in)equality constraints for both H1 and H2 are not supported by the data,

see populations 6 and 7. These results makes the PIC outperform both the

posterior and prior DIC in all situations.

6.6.3 Prior Sensitivity

In this section we evaluate the influence of the prior specification on the PIC.

To do so, we performed a simulation study where µ0, τ 2
0 , υ0 and σ0 are varied.

We evaluated H0, H1 and H2 for populations 1, 4, and 7 with: (1) µ0 − 1,
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µ0 + 0 and µ0 + 1; (2) τ0 × .5, τ0 × 1, and τ0 × 5; (3) υ0 = 2 and υ0 = 5; (4)

σ0 × .5, σ0 × 1, and σ0 × 5.

The results are presented in Table 6.1 with in bold the correct conclusions.

As can be seen, the specification of the prior influences the results and it is

sensitive for different values for µ0, τ0, υ0 and σ0. However, as can be seen for

different values of the priors the influences mainly the height of PIC and not

the relative ordering of H0, H1, and H2. It is therefore to be expected that

any reasonable data based method can be used to specify the parameters of

the prior distribution if the goal is to select the best of a set of (in)equality

constrained hypotheses using the PIC.

6.6.4 Example 2 Continued

Let us return to Example 2 with H0 : µ1, µ2 and H1 : µ2 > 0, µ1 > 0.

The situation for this example is analogous to Example 1, that is, also for

Example 2, the first and the third term of Equation (6.31) are similar for

H0 and H1 if the population from which the data was generated is fully in

agreement withH1. Again, since, h0(µ1, µ2,Σ) 6= h1(µ1, µ2,Σ), because of the

normalization of the prior distribution, samples from the prior distribution

are different for H0 and H1. For µ1 → ∞, µ2 → ∞, the integral used to

compute Eh0(·)
[
·
]

takes all values of −2 log f(y1,y2 | µ1, µ2,Σ) into account,

whereas Eh1(·)
[
·
]

only takes values of -2 log f(y1,y2 | µ1, µ2,Σ) into account

where µ1 > 0, µ2 > 0. Since, in the latter case less small values for Eh1(·)
[
·
]

are sampled, prior DICH0 > prior DICH1 .

Analogously to Example 1, the prior DIC does not correctly distinguish

H0 and H1 because the loss function does not take ‘bad’ fitting hypotheses

into account. Therefore we use the the PIC, see (6.46) to select the best

hypothesis. Note that we also evaluated H2 : µ1 = 0;µ2 = 0.

To evaluate H0, H1 and H2 we performed a simulation study where data

sets from six different populations were considered. The deviance from zero

for the two means varies from small to large, see Figure 6.3. Populations 1-4

satisfy the constraints of H1 and populations 5-6 are not in agreement with
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Table 6.1: Sensitivity of the PIC. The bold numbers represent the hypothesis that should

be preferred by the PIC and is also preferred by the PIC.

Population 1 Population 4 Population 7

H0 with µ0 − 1 203 186 189

µ0 182 144 155

µ0 + 1 202 187 188

H1 with µ0 − 1 180 185 200

µ0 164 143 167

µ0 + 1 181 187 199

H2 with µ0 − 1 203 178 228

µ0 183 136 162

µ0 + 1 202 178 228

H0 with τ0 × .5 185 150 162

τ0 × 1 182 144 155

τ0 × 5 292 215 236

H1 with τ0 × .5 160 151 174

τ0 × 1 164 143 167

τ0 × 5 270 214 257

H2 with τ0 × .5 186 143 175

τ0 × 1 183 136 162

τ0 × 5 195 207 238

H0 with υ0 = 2 182 144 155

υ0 = 5 168 130 141

H1 with υ0 = 2 160 143 167

υ0 = 5 145 129 152

H2 with υ0 = 2 186 136 162

υ0 = 5 171 127 146

H0 with σ2
0 × .5 213 167 180

σ2
0 × 1 183 144 155

σ2
0 × 5 200 169 177

H1 with σ2
0 × .5 167 165 203

σ2
0 × 1 161 143 167

σ2
0 × 5 196 169 181

H2 with σ2
0 × .5 246 156 218

σ2
0 × 1 186 136 162

σ2
0 × 5 177 159 179
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H1. Data sets were constructed in such a way that the sample means and

variance-covariance matrix are exactly equal to the population parameters

(ρ = .4;σ2
1 = 1;σ2

2 = 1). For each of these data sets, we computed the

posterior DIC and the PIC for H0, H1 and H2. The specification of µ0, τ0,

υ0 and σ2
0 is described in Section 6.3.2. Like for Example 1, samples for the

prior distribution can be used to compute the PIC. For population 1 with

µ1 = 1 and µ2 = 1, the priors are µ0 = 0, τ0 = 0.98, υ0 = 3 and σ2
0 = 3.95.

The results are shown in Figure 6.3 and it can be seen that the PIC

outperforms the posterior DIC when the data is in agreement with the

constraints of H1. Compare, for example, the results for population 2, where

the PIC has the lowest value for H1 but the posterior DIC is indifferent

between H0 and H1.

6.7 Moral Judgment Competence

In this section we use the PIC as a model selection tool in an application.

Leenders and Brugman (2005) investigated whether moral judgment com-

petence and attitude towards delinquent behaviour create a domain shift

in young adolescents. That is, a certain behavior which in society as a

whole is considered to be not moral (e.g. aggression, violence), might be

a group convention in certain adolescent groups. In total 135 pupils of

intermediate secondary schools in the Netherlands were asked to report about

self conducted aggressive acts. They were also asked to judge aggressive acts

and vandalistic acts in hypothetical situations on how moral they thought

the behaviour was. The researchers had specific ideas about differences in

the level of morality in these hypothetical situations between pupils that did

or did not report to conduct aggressive acts themselves.

The statistical model is analogous to Equation (6.41) where µ1· and µ2·

denote the mean score on the hypothetical construct vandalism (denoted by

y1) and the hypothetical construct aggression (denoted by y2) and where µ·1

and µ·2 denote the mean for the group reported not to conduct aggressive acts
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and the group that did report to conduct aggressive acts, respectively. Again,

group membership of a person is denoted by dig ∈ 0, 1 and the residuals are

assumed to be normally distributed, see Equation (6.42).

There are three hypotheses of interest

H0 : µ12, µ11 and µ22, µ21

H1 : µ12 > µ11 and µ22 > µ21

H2 : µ12 = µ11 and µ22 > µ21 .

(6.47)

The first hypothesis, is an unconstrained hypothesis (H0). A second

hypothesis, H1, postulates that the aggressive group (µ·2) also judge the

same behaviour in all hypothetical situations to be more conventional and

as such morally more appropriate than their peers who do not report such

behaviour (µ·1). The third hypothesis, H2, is that there is a domain shift

in the judgement about hypothetical situations. That is, for pupils that

reported to have conducted some delinquent behavior (i.e. aggression),

in the same hypothetical situation, they will judge it to be more morally

accepted compared to adolescents that did not report to conduct the same

behavior. However, in hypothetical situations concerning other delinquent

behaviour that was not reported by these same adolescents (i.e. vandalism),

they will judge the hypothetical situation to be equally morally condemnable

as adolescents that did not report any antisocial behaviour.

The prior distribution, h0(θc,θn) = h0(µ11, µ12, µ21, µ22) h0(Σ), is chosen

again such that the prior mean is on the border of the admissible parameter

space. We used a multivariate normal distribution for the means and an

inverse Wishart distribution for the variance-covariance matrix (see, Mulder,

Hoijtink & Klugkist, 2009):

h0(µ11, µ12, µ21, µ22,Σ) = MVN(µ|µ0, τ
2
0 )×W−1(Σ|υ0,Σ0), (6.48)

where µ = {µ11, µ12, µ21, µ22} and µ0 = {µ0, µ0, µ0, µ0} where

µ0 =
N∑
i=1

y1i + y2i

2N
, (6.49)
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Table 6.2: Descriptive Statistics (n1 = 38;n2 = 97; ρ = .52)

Mean SD

µ11 5.37 1.23

µ12 5.68 1.62

µ21 5.27 1.27

µ22 6.71 2.14

τ 2
0 is the prior variance-covariance matrix with[

τ 2
0 0

0 τ 2
0

]
, (6.50)

where

τ 2
0 =

N∑
i=1

(y1i)
2 + (y2i)

2

2N
× 1

2
. (6.51)

For the Inverse Wishart, υ0 = 3 and Σ0 is the scale matrix[
σ2

0 0

0 σ2
0

]
, (6.52)

where

σ2
0 =

2

2N

N∑
i=1

(y1i)
2 + (y2i)

2 . (6.53)

In Table 6.2 group means and standard deviations (SD) are provided. The

results of the model selection procedure are presented in Table 6.3. As can be

seen in this table the posterior DIC is indifferent for all hypotheses, whereas

the PIC chooses for H2. This result can be confirmed when looking at the

group means in Table 6.2 where µ22 is larger then µ21 and µ11 is close to µ12.

6.8 Conclusion

In this paper we showed how to obtain the prior DIC based on the derivation

of the posterior DIC presented in Spiegelhalter et al. (2002). The point of
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Table 6.3: Model Selection Results for the application

Hypothesis PIC posterior DIC

H0 1044 935

H1 1023 935

H2 872 935

departure for the prior DIC is the same as for the posterior DIC, namely the

expected loss. The derivation of the prior DIC is provided and the choice

for the prior distribution, which is based on training data is motivated (see

also Mulder, Hoijtink & Klugkist, 2009). Its performance is illustrated using

examples and we showed that the prior DIC can be used to choose between

a set of constrained hypotheses if the population from which the data is

generated is fully in agreement with the most constrained hypothesis, where

the posterior DIC failed to do so. However, the prior DIC fails to choose

between a set of inequality constrained hypotheses if the population is not

in agreement with the constrained hypothesis.

In conclusion, neither the prior DIC, nor the posterior DIC are proper

model selection tools for the evaluation of inequality constrained hypotheses.

To accommodate for this, the loss function that is minimized by the prior

DIC was adjusted. The proposed loss function determines not only how well

replicated data fit with a certain hypothesis, but it also determines how well a

hypothesis fits the data. It is approximated by a new model selection tool, the

Prior Information Criterium (PIC). We demonstrated with three examples

that the PIC is able to select the best of a set of (in)equality constrained

hypotheses.
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Do Delinquent Young Adults Have a High or a

Low Level of Self-concept?

Van de Schoot, R. & Wong, T.

In press for Self & Identity

Abstract

This study explored the levels of self-concept of delinquent young adults (n = 873). This

question is of theoretical and practical importance, as therapeutic programmes addressing

the self-concept must be based on clear evidence. The present study demonstrated that

self-concept is related to delinquent behaviour and that men and women differ both in the

strength and direction of the association. Furthermore, Bayesian latent class analysis

revealed that both high-delinquent and non-delinquent men and women fall into two

groups: those with high levels of self-concept and those with low levels of self-concept.

This pattern emerged across the 12 different domains of self-concept assessed. These

results may help to explain inconsistent results of previous studies on the link between

self-concept and delinquency.
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7.1 Introduction

In recent years the association between delinquent behaviour and self-concept

in children, adolescents and young adults has received much attention (see,

e.g., the review of Baumeister, Boden & Smart, 1996). A common finding in

this type of research is that a low self-concept is a significant and powerful

risk factor for many types of negative life outcomes, including delinquency

(e.g. Donnellan, Trzesniewski, Robins, Moffitt & Caspi, 2005; Fergusson

& Horwood, 2002; Webster, Kirkpatrick, Nezlek, Smith & Paddock, 2007).

This has led to many intervention programmes aiming to reduce delinquent

behaviour by improving offenders’ self-concepts (Mason, 2003). However,

other researchers argue that delinquency in young adults stems from a high

self-concept that is threatened or disputed by others (e.g., Bushman &

Baumeister, 1998). If this is correct, then intervention programmes aiming

at increasing the level of self-concept may make things worse.

Given the theoretical attention surrounding this issue as well as its clinical

implications, there is a need to gather clear evidence regarding the link

between self-concept and delinquent behaviour: Do young adult offenders

have a high or a low self-concept?

7.1.1 Self-concept and Delinquent Behaviour

Throughout the life span, self-esteem and self-perceived competencies (i.e.,

self-concept) are considered essential determinants of well-being and functioning

(Baumeister, Campbell, Krueger & Vohs, 2003; Harter, 1990). In this study

we focus on self-concept. Since there is often confusion about the difference

between self-concept and self-esteem, it is useful to define these two terms

and explain how they differ. Self-concept can be defined as the knowledge,

appreciation and understanding a person has of him/herself (e.g. Cole,

Chan & Lytton, 1989). As a person grows older, perceived competencies are

characterized by increasing differentiation of competence domains (Harter,

1990, 1999). Self-esteem, however, is the evaluative component of self-
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concept (Harter, 1990, 1999). It addresses “how one feels about the self

when it is viewed as an object of evaluation” (Campbell, 1990, p. 539). We

focus on the self-concepts of young adults and their life tasks, which include

domains such as work-related achievements, finding a spouse, and leaving

the parental home (see also Visser-Van Balen, Laak, Treffers, Sinnema &

Geenen, 2007).

Previous research into the association between self-concept and de-

linquent behaviour yielded contradictory conclusions that resulted in four

different notions about this association. In the current study, we translated

these notions into four predictions through which we examined whether

young adult offenders would show low or high self-concepts.

Prior literature suggests competing predictions about the link between

self-concept and delinquency. The first prediction would be that young

adults who commit offences have a lower self-concept compared to young

adults who do not commit offences. This negative association has been

found among different nationalities, age groups, and different assessments

of the self-concept and delinquent behaviour (e.g. Donnellan et al., 2005;

Murphy, Stosny & Morrel, 2005; Trzesniewski et al., 2006). Trzesniewski et

al. (2006), for example, tested the hypothesis that low self-concept predicts

negative real-world consequences such as delinquency. Using prospective

data, they found that adolescents with a low self-concept were more likely

to be convicted of a crime during adulthood than adolescents with a higher

self-concept. An explanation might be that negative self-views sabotage the

ability to cope successfully with events. That is, as Swann, Chang-Schneider

and McClarty (2007) state, in the wake of failure experiences, people with

negative self-views are more likely to suffer emotional trauma than people

with positive self-views.

The second prediction would be that young adults who commit offences

have similar levels of self-concept when compared to young adults who do

not commit offences. ‘Similar’ here does not refer to equal levels of self-

concept; instead it refers to unrelatedness between level of self-concept and
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delinquency. Hence, the prediction would be for no association between

delinquent behaviour and self-concept. Many studies have failed to find an

association (e.g. Bushman & Baumeister, 1998; Jang & Thornberry, 1998;

Neumark-Sztainer, Story, French & Resnick, 1997; Salmivalli, Kaukiainen,

Kaistaniemi & Lagerspetz, 1999). Bushman and Baumeister (1998), for

example, did experiments to find an explanation of the role of self-concept

in aggression. However, there appeared to be no significant correlation

between levels of self-concept and aggression in any of the three situations

they studied.

The third prediction would be that young adults who commit offences

have a higher self-concept than young adults who do not commit offences

(e.g. Piko, Fitzpatrick & Wright, 2005; Rigby & Slee, 1993; Spencer, Josephs

& Steele, 1993). Baumeister et al. (1996), who reviewed various bodies

of findings, found that perpetrators of aggression might have positive and

perhaps even inflated views of themselves. A possible explanation Baumeister

et al. provide is that delinquents seem to believe they are superior to others

and therefore might feel entitled to help themselves to the resources of other

people.

These contradictory findings might be reconciled by a fourth prediction:

There are two groups of young adults who commit offences, a group that

has low levels of self-concept and a group that has high levels of self-

concept (Baumeister et al., 2003; Diamantopoulou, Rydell & Henricsson,

2008; Boden, Fergusson & Horwood, 2007; Vermeiren, Bogaerts, Ruchkin,

Deboutte & Schwab-Stone, 2004). When the relation of self-concept to

delinquency is examined without disentangling low and high levels of self-

concept, the possible roles of low and high self-concept might cancel each

other out (Salmivalli, 2001).

7.1.2 Domain Differences

Over and above these four predictions, it may be argued that the association

between delinquent behaviour and self-concept is dependent on the domain
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of self-concept. Swann et al. (2007) proposed that both the self-concept

(as a general concept) as well as its metacognitive aspects (that is, different

relevant domains) are important (see also Marsh & Craven, 2006; Rosenberg,

Schooler & Schoenbach, 1989). Hence, it may be that the association between

self-concept and delinquent behaviour in young adults differs according to the

domain of self-concept. Carroll, Houghton, Wood, Perkins and Bower (2007)

used three dimensions of self-concept to study the relationship with level

of involvement in delinquent activities. They found that students highly

involved in delinquent activities reported significantly lower classroom, peer,

and confidence self-concepts. Vermeiren et al. (2004) used different domains

and found that a low self-concept regarding family climate and school

competence and a high self-concept regarding friendships were significantly

related to juvenile delinquency.

An important caveat is that self-concept might not be a one-dimensional

construct; furthermore, different domains of self-concept may be differently

related to delinquent behaviour. In the current study we assessed self-concept

as a set of domains domains judged to be relevant for the age group of

the respondents including a global self-worth scale, as developed by Harter

(1983, 1987, 1990, 1999). See Appendix A for a description of all the relevant

domains used in the current study. Since this study was the first to use all

13 domains for young adults in examining the association with delinquent

behaviour, we approached the domain differences in an exploratory way.

7.1.3 Gender Differences

Besides domain-specific differences, gender differences may also exist in the

relationship between self-concept and delinquency. Piko et al. (2005), for

example, found that female delinquency was associated with a high self-

concept, whereas male delinquency was not associated with level of self-

concept. Vermeiren et al. (2004) concluded that for both sexes, low self-

concept regarding academic competence showed the strongest association

with delinquent behaviour, but the variance explained was consistently higher
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for men than for women. Gender differences in this association were also

found by Diamantopoulou et al. (2008) and Webster et al. (2007). We thus

explored gender differences and have reported findings for men and women

separately where possible.

7.1.4 Main Aims of this Study

It is far from clear how the association between self-concept and delinquent

behaviour can best be described. Studies have suggested that both low

self-concept and high self-concept may be related to delinquent behaviour,

while other studies have failed to find any relationship at all. One way

to resolve these discrepancies might be to propose that either a low or a

high self-concept could be related to delinquency. Furthermore, different

predictions might be valid for different domains of self-concept and for men

and women separately. In this study we had two aims: (1) to explore

the association between self-concept and delinquent behaviour and possible

gender differences using a regression approach and (2) to adopt a group-based

approach in order to find out whether subgroups exist in accordance with the

predictions previously introduced. To do this we used confirmatory latent

class analyses (Hoijtink & Boom, 2008; Laudy, Boom & Hoijtink, 2005) to

test the competing predictions and also to determine whether the findings

would differ based on self-concept domain or participant gender.

7.2 Method

7.2.1 Participants

Participants were 899 young Dutch adults (male = 34%) with ages ranging

from 18 to 24 years (M = 20.51; SD = 1.81). Of the participants 87.5%

were currently following some level of education. Among these, 29.7% were

in intermediate vocational education, 25.1% in higher vocational education

and 44.1% at university (For a detailed explanation of the Dutch educational



7.2. METHOD 141

system, see De Graaf, De Graaf & Kraaykamp, 2000). Forty-five percent of

the participants worked more than 10 hours per week and 27% worked more

than 30 hours per week. The participants were living in different parts of the

Netherlands with divergent degrees of urbanization and were from different

ethnic groups. Five percent of the sample was born outside the Netherlands.

7.2.2 Procedure

The total sample was recruited by Bachelor students in Developmental

Psychology and Clinical & Health Psychology at Utrecht University, the Ne-

therlands. E-mail (50%) and paper- and-pencil versions of the questionnaires

were used, most of them distributed at schools, factories, and stores in towns

and cities in different parts of the Netherlands.

7.2.3 Measures

Delinquent behaviour. To assess self-reported delinquent behaviour we used

a questionnaire that consisted of five categories of offences and violations:

property offences, crimes of violence, traffic violations, drug-related offences,

and vandalism (see Table 7.1). The questionnaire was based on a study of

delinquent behaviour commissioned by the Dutch government (Jennissen &

Blom, 2005). It was pretested in a pilot study in which 72 female and 53 male

students participated (mean age = 21; SD = 0.19). Participants were Dutch

students in pre-vocational education (40%) and higher education. The first

version of the questionnaire consisted of 25 items, 5 questions per category.

Each item (e.g. stealing money in the home) consisted of the question:

“Did you engage in this behaviour?” scored on a three-point scale (never, just

once, often). Participants in the pilot study were asked to provide feedback

on all items. On the basis of this feedback we deleted some of the items

(e.g., committing tax fraud, joy-riding, discriminating against a person),

and excluded one item with no variance (robbing someone). To select the

final set of items we performed an exploratory factor analysis in Mplus 4.1

(Muthén & Muthén, 2007). Items per category with factor loadings lower
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than .30 were omitted. For the final questionnaire, items that decreased the

Cronbach’s alpha were also deleted. In total, 11 items were selected with a

final Cronbach’s alpha of .85.

For the final data set, the 11 items described above were used (see Table

7.1 for the frequency statistics). To evaluate model fit, items per category

were included as categorical variables in a confirmatory factor analysis (CFA)

using Mplus. Model comparison indices indicated a better fit for a one-factor

model (BIC= 6583.376) compared to a two-factor model (BIC = 6584.664).

The Cronbach’s alpha was .74.

Self-concept. To assess the multiple domains of self-concept we used the

Self-Perception Profile for Young Adults (SPP-YA, Dutch version; Visser-

Van Balen et al., 2007). This questionnaire is based on the Dutch version

of the Self-Perception Profile for Adolescents (Treffers et al., 2002). The

SPP-YA consists of 60 items to assess perceived competencies and global

self-worth in young adults aged 18 to 24. The items are divided into 13

scales: a global self-worth scale (five items) to assess general self-concept and

12 perceived competence scales for each domain that is important for young

adults (Harter, 1990, 1999). See Appendix A for a description of the scales .

The items have a 4-point answering format and in every item two alternatives

are presented: “Some are X” but “Others are not X”. An example is “Some

young people are not productive in their work BUT other young people are

very productive in their work”. Another example is “Some young people

are better then me at sport BUT other young people are not better then

me at sport”. The respondent is asked to judge to which group he/she

belongs, and to mark whether this is ‘sort of true’ or ‘really true’ for him/her.

Items per scale were included as categorical variables in a confirmatory factor

analysis using Mplus. Using a confirmatory factor analysis, we replicated the

factor structure as was found by Visser-Van Balen et al. (2007) who used

exploratory factor analysis. Fit indices for our data indicated a good fit of a

13-factor model (CFI = .94; TLI = .93; RMSEA = .05; Cronbach’s alphas

between .66 and .86).
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7.2.4 Strategy of analysis

To examine our research question, we adopted two different approaches.

First, we explored the data using a MANOVA to test for gender differences

on all variables, together with a multiple group regression analysis where

delinquent behaviour was predicted by the global self-worth scale and the

12 domain-specific scales (See Appendix A). We used the mean scores for

each variable. The delinquency variables were Poisson distributed and we

used the count option in Mplus to run the regression analysis. We also

ran a multi-group model to investigate gender differences in the relationship

between level of self-concept and delinquency. The Akaike’s Information

Criterium (AIC) (Akaike, 1973) and the Bayesian Information Criterium

(BIC) (Schwarz, 1978) were used to select the best model in terms of model

fit and model complexity. Model 1 constrained regression coefficients to be

equal for men and women, whereas Model 2 did not have this constraint.

To examine whether there were subgroups that differed in level of self-

concept and delinquency, we used confirmatory latent class analysis (C-LCA:

Hoijtink, 1998, 2001; Hoijtink & Boom, 2008; Hoijtink & Molenaar, 1997;

Laudy, Boom & Hoijtink, 2005). Because it is a fairly new technique, we

devote some space here to introducing the methodology. The main goal

of traditional LCA is to determine groups of persons with similar item

responses. However, we had specific expectations not only about the number

of groups, but also about the answering patterns in each subgroup. In

other words, we had specific expectations about the ordering of the latent

class probabilities. Our analytic needs led us to use the software developed

by Laudy et al.. The main elements of this methodology are introduced

below and are described in more technical detail in Appendix B; however for

more detailed information about this method, see also Hoijtink and Boom

(2008). Comparisons between more traditional ways of analyzing data and

confirmatory Bayesian approaches are described in (Van de Schoot, Hoijtink,

Mulder et al., 2010) and Kuiper and Hoijtink (2010), for example.
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The first step in Bayesian model selection is to specify the inequality

constraints among the latent class probabilities of interest. For example,

suppose we expect there to be two groups of young adults and that these

groups can be distinguished in terms of their levels of delinquency and self-

concept. Assume that the probability of giving the answer ‘yes’ to questions

regarding any of the offences is higher in group 1 than in group 2. We

would then expect that the probability of choosing the ‘disagree’ alternative

on the self-concept items, indicating a low self-concept, would be lower in

group 1 than in group 2. This would result in two groups of young adults:

one group with a high level of delinquent behaviour in combination with a

low self-concept, and a group with a low level of delinquent behaviour in

combination with a high self-concept.

In this way, a set of constraints could be constructed for each prediction.

We evaluated four different models based on the four predictions outlined in

the introduction. However we also explored a number of additional models to

ascertain whether our results were trustworthy. In Appendix B, we describe

these models in statistical terms. To summarize the four main models were

as follows: (1) a first group of young adults with high levels of delinquency

in combination with low levels of self-concept and a second group with

low levels of delinquency in combination with high levels of self-concept; (2)

a first group with high levels of delinquency and a second group with low

levels of delinquency where no constraints are imposed on the latent class

probabilities for the items of the self-concept scale; (3) a first group with

high levels of delinquency in combination with high levels of self-concept and

a second group with low levels of delinquency in combination with low levels

of self-concept; (4) two groups with high levels of delinquency, one with low

levels of self-concept and one with high levels of self-concept. For the global

self-worth scale several alternatives were explored and the best solutions were

validated on the 12 other domains.

After confronting the set of inequality constraints for each model with the

data, the software provides each model with the marginal likelihood value.
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This is a model selection tool which quantifies the degree of support for

the constraints imposed on the latent class probabilities provided by the

data. It has a close link with traditional model criteria such as the AIC

and BIC that also can be used to evaluate models in latent class analyses.

However, in contrast to Bayesian model selection, these traditional criteria

are as yet unable to deal with inequality constraints specified between latent

class probabilities. The easiest way to interpret these marginal likelihood

values is to translate them into Posterior Model Probabilities (PMP). These

PMPs reflect the probability that the prediction at hand is the best of the set

of predictions under consideration. The hypothesis with the highest PMP

receives most support from the data.

The software used in this paper, which is described in Laudy, Boom

and Hoijtink (2005) and in Hoijtink and Boom (2008), is based on two

assumptions: (1) no missing data is allowed and (2) only dichotomous

variables are allowed.

With respect to the first assumption, most of the data was fully observed

(84.7%), 8.2% of the participants had only 1 missing value, 2.8% had two

missing values and 4.3% had more missing values. Of these latter cases, four

questionnaires were completely blank and were omitted from the data set. In

total, a percentage of less than 1% of all the data points was missing. Missing

items were imputed using the MICE package (Van Buuren & Oudshoorn,

1999, 2005). MICE can be used to impute categorical data. Further analyses

were executed on the sample of imputed cases (n = 895).

To deal with the second assumption (only dichotomous variables are

allowed) we chose to dichotomies the items instead of the scale scores.

The items for the delinquency scale were measured on a three-point scale

whereas the items for the self concept were measured on a four-point scale.

Dichotomizing these items is more straightforward than dichotomizing a scale

score because much information would be lost if we performed the latter

operation. In addition, using several items instead of one single scale provided

us with more detailed information on the subgroups.
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The items were dichotomized by combining answering categories. For the

delinquency items we recoded the answering categories into: 0 = not engaging

any delinquent acts; 1 = once or often engaging in delinquent acts. It

appeared that, on average, 48% of the sample had committed offences during

the previous year. Of those, 32% committed three or more offences. The

items for the self-concept scale were dichotomized as follows: If respondents

chose the ‘agree’ alternative (either ‘sort of true’ or ‘really true’), this was

coded 1 (i.e., high); it was coded 0 (i.e., low) if they chose the ‘disagree’

alternative.

7.3 Results

7.3.1 Regression and MANOVA Results

To evaluate whether mean delinquency level and the 13 self-concept scales

differed by gender, a multivariate analysis of variance (MANOVA) was per-

formed. Results of evaluation of assumptions were satisfactory. Significant

multivariate main effects were found (F (14, 880) = 19.44; p < .002, partial

η2 = .24) . Univariate analyses showed significant effects for some of the

scales. See Table 7.2 for means and standard deviations for the total group

and for men and women separately.

A noteworthy finding is that men scored higher on delinquency than

women, as well as on global self-worth, and physical appearances. The

opposite pattern held for athletic competence, behaviour and consequence,

close friendships, nurturance, household management, and sense of humour,

on which women scored higher.

To evaluate which domains were related to delinquent behaviour and

whether these differed for men and for women, we performed a multiple

group Poisson regression in Mplus. The results are presented in Table 7.3,

and we will limit the discussion of the results to the most relevant findings.

First, we compared a model which did not allow for different estimates

for men than for women to a model which did allow for different estimates
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based on gender. It appeared the latter model had a better trade

off between model fit and model complexity (∆AIC = 342; ∆BIC =

275), suggesting that the association between self-concept and delinquent

behaviour differed between men and women. This can be illustrated by,

for example, the regression coefficient for close friendships. This coefficient

was almost zero (B = .05) for the constrained model, but in the gender-

based model the coefficient was .42 for women and -.26 for men. In

addition, results revealed a different set of significant predictors for men (close

friendships, job competence, romantic relations) than for women (scholastic

competence, social competence, physical appearance, nurturance, household

management). Additionally, there were some predictors common to both

sexes (athletic competence, behaviour and conscience, sense of humour).

Relationships with parents appeared to be the only non-significant predictor

for both men and women. In addition, the direction of the effect for athletic

Table 7.2: Mean scores for Delinquent and Self-Concept Scales with Standard Deviation

Between Brackets (n=895)

Male Female

Delinquency scale* 1.73 (2.39) 0.36 (0.84)

Self-worth* 2.44 (0.52) 2.36 (0.52)

Scholastic Competence 2.11 (0.48) 2.04 (0.48)

Athletic Competence* 2.20 (0.51) 2.30 (0.48)

Social Acceptance 2.20 (0.51) 2.34 (0.42)

Physical Appearance* 2.21 (0.48) 2.12 (0.48)

Behaviour and Conscience* 2.11 (0.46) 2.29 (0.46)

Close Friendships* 2.65 (0.51) 2.79 (0.44)

Job Competence 2.33 (0.56) 2.34 (0.49)

Nurturance* 2.01 (0.44) 2.15 (0.39)

Household Management* 2.31 (0.68) 2.56 (0.69)

Romantic Relations 2.14 (0.50) 2.17 (0.50)

Sense of Humour* 2.38 (0.46) 2.43 (0.44)

Relationship with Parents 2.38 (0.46) 2.42 (0.44)
* denote significant gender differences (p < .05)
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competence was different for men (negative) and women (positive), as shown

in Table 7.3.

7.3.2 Bayesian Results: Higher or Lower Overall

Self-concept?

We started the Bayesian analyses with an exploratory approach and inves-

tigated 4 models without any constraints imposed between the latent class

probabilities. Each of these 4 models was an unconstrained model and the

models differed only in the number of latent classes (M01, . . ., M04 with 1

to 4 latent classes respectively). The results are presented in the top panel

of Table 7.4.

As can be seen, a model with 4 latent classes has the lowest marginal

likelihood value and the highest PMP value (.99). The gender-specific

analyses produced equivalent results. A model with 5 latent classes resulted

Table 7.3: Multiple group Poisson regression of the 13 subscales of self-concept on

delinquent behaviour for men and women seperately (n = 965)

Women Men

B SE B SE

Self-worth .10 .15 -.08 .09

Scholastic Competence .32* .15 .15 .09

Athletic Competence .36* .14 -.24* .09

Social Acceptance -.48* .17 .12 .12

Physical Appearance -.14* .15 -.15 .10

Behaviour and Conscience -.45* .15 -.29* .09

Close Friendships -.26 .15 .42* .09

Job Competence -.22 .15 .22* .09

Nurturance .35* .19 -.003 .10

Household Management -.27* .10 -.14* .07

Romantic Relations .15 .14 .37* .09

Sense of Humour .50* .15 .23* .09

Relationship with Parents .21 .17 .08 .10

Intercept -1.24 .81 -1.32 .43
* denote significant gender differences (p < .05)
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Figure 7.1: Means on the delinquency items (1-11, see Table 7.5) and the self-concept

items (12-16, see Table 7.5) for the 4-group solution without any constraints.

in such small sample sizes for some of the classes that this model cannot

be interpreted from a theoretical point of view. The unconstrained latent

class probabilities for the total sample are shown in Table 7.5. Inspecting

these unconstrained latent class probabilities provided an initial test of our

competing predictions. Figure 7.1 displays (in graphical form) the mean score

for each group on all items used in analyses. Combining the information on

means presented in the figure and the latent class probabilities presented in

Table 7.5, the classification of the four groups can be interpreted as follows:

There was a large group (51%) with the lowest levels of delinquency and

the lowest levels of self-concept and a moderate-sized group (38%) with low

levels of delinquency and high levels of self-concept. Furthermore, there was

a small group (7%) with high levels of delinquency and low levels of self-

concept. Finally, there was a small group (4%) with the highest levels of

delinquency and high levels of self-concept.

A more traditional paper using LCA would stop here, and the latent

class probabilities would be interpreted. In this project, however, we went
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one step further and formulated inequality constraints between the latent

class probabilities according to our predictions, which enabled us to test our

predictions directly. We describe this process in the remainder of this section.

The bottom panel in Table 7.4 shows the marginal likelihood values and

PMPs for the models 1-3 as described in the strategy of analyses section.

For prediction 4 we evaluated for the low-delinquency group what the best

alternative was regarding the constraints in the level of self-concept. Several

alternative models were explored: (4a) one group that had no constraints;

(4b) one group with levels of self-concept that were in between the high and

low levels of the two offender groups; (4c) two groups: one group with high

levels of self-concept and another with low levels of self-concept.

Table 7.4 shows that the PMP for prediction 4c was .99. Remember

that a PMP value is on a probability scale and runs between 0 and 1. This

PMP value indicated very strong support for the set of inequality constraints

imposed on the latent class probabilities. In other words, there was evidence

for two groups of delinquents and non-delinquents: one group with high

levels and one group with low levels of self-concept. The gender-specific

analyses produced equivalent results, although the support for model 4c for

the women was only moderate. This result thus provided strong support

for the hypothesis that either a low or a high self-concept is associated with

delinquent behaviour. As such, there seem to be two distinct groups of young

adults who commit offences: one with a high self-concept and one with a low

self-concept.

The four theoretically based models (including the model that appeared

to be most adequate for prediction 4, i.e. Model 4c) were used for evaluating

the domain-specific analyses. We ran the software for these four models for

each domain and for men and women separately. Theses analyses resulted

in 96 marginal likelihood values and are not presented in the current paper

for reasons of space. The results, however, clearly pointed to Model 4c as

the best model, since its PMP value exceeded .99 for each and every domain

and for both men and women.
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7.4 Discussion

The present research tested competing models of the relationship between

self-concept and delinquent behaviour using Bayesian methodology. This

association has been debated in the literature, but there is as yet no consensus

regarding their precise relationship. New Bayesian analysis tools allowed a

new form of differentiated relative evaluation.

One thing seemed to be evident in the present study: Self-concept

is related to delinquent behaviour, either positively or negatively. Our

preliminary results from the MANOVA and regression analyses showed that

it clearly depends on the domain whether the relationship between self-

concept and delinquency is positive or negative. These differences became

even more pronounced when men and women were examined separately. Men

and women appeared to differ both in the strength and the direction of the

association. This indicates that, depending on the domain of self-concept and

on gender, there is a negative or positive relationship between self-concept

and delinquent behaviour in young adults.

The latent class results went one step further and revealed that for all the

domains, both high-delinquent and non-delinquent men and women fall into

two groups: those with high levels of self-concept and those with low levels

of self-concept. This finding could help to explain some of the inconsistent

results of previous studies on the link between self-concept and delinquency.

It is possible that studies that found a positive association between the two

were correct, but so were studies that found a negative association. Our

study showed that there are two groups of delinquents, those with a high

self-concept and those with a low self-concept.

These are important findings, since programmes developed to reduce

delinquent behaviour often aim to improve self-concept (Mason, 2003). These

results suggest that programmes focusing on self-concept should first consider

the level of each individual’s self-concept before making decisions about
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whether to boost or temper it. Ideally, this should be done in each domain,

as the level of an individual’s self-concept may differ between domains.

The two groups of delinquents exist for both genders and in every

domain of self-concept. We will highlight some of the domains for which

this finding was quite remarkable. For scholastic and job competence,

for example, a high self-concept seems unexpected. Delinquent young

adults generally come from low-SES households and score low on school

achievement (Thornberry & Krohn, 2003), two important factors related

to low occupational prospects (J. W. Lynch, Kaplan & Salonen, 1997).

Furthermore, it is known that offenders usually have poor jobs (Laub, Nagin

& Sampson, 1998). According to the strain theory (Agnew, 1992), people

who have fewer chances of attaining high socio-economic status, perhaps

because of poorer job prospects, might engage in delinquent behaviour in

order to reach their goals. It is surprising, then, that some delinquent

men and women considered their scholastic and job prospects in such a

positive light. Perhaps their views of their career competences give them

unrealistically positive views of their own futures.

Furthermore, some of the delinquent young adults rated their competence

regarding behaviour at a low level. This could imply, for example, that

some delinquents knew quite well that they should not engage in such ‘bad’

behaviour, but it did not keep them from doing it, possibly because they did

not realise that such behaviour might bring negative consequences for them

in the future. Although this statement was not investigated in the current

study, previous literature indeed shows that delinquents do not think about

the negative effects that criminal behaviour may have on important aspects

of life, like their futures (Modecki, 2009). This is related to our finding

that delinquent persons viewed their job prospects positively. Although

delinquent young adults seem to know that it is not a good thing to be

delinquent, it is possible that they are unconcerned with their behaviour or

do not see its likely consequences.
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Previous literature suggests that a good relationship with parents can

restrain juveniles from delinquent behaviour since they do not want to

jeopardise this bond. If the parent-child relationship is of low quality, this

incentive disappears. Such juveniles can become delinquent because they are

not directed by their emotional attachment to their parents (Gottfredson &

Hirschi, 1990). However, our study showed that juveniles who have a good

relationship with their parents can also become delinquent. Combining this

result with the aforementioned literature, we could speculate that it may be

that parents are no longer so important for our respondents, since they are

already in young adulthood. Close friends and romantic partners might have

a more pronounced impact on them. However, the level of self-concept in

these domains could also be high for delinquent young adults. Delinquents

with a high self-concept in terms of relationships with close friends and

romantic partners might have friends and romantic partners who are also

delinquent. A good relationship then might then actually increase the odds

of turning to delinquent behaviors.

Another remarkable finding was that young adults who perceive them-

selves as nurturant could also be delinquents. Nurturance is closely linked

to empathy (Batson, Lishner, Cook & Sawyer, 2005), and people who have

high levels of empathy are usually less likely to offend than those with low

levels of empathy (Jolliffe & Farrington, 2004). This could be because people

who share someone else’s feelings caused by their own delinquent behaviour

may be less inclined to engage in this behaviour (see also, Feshbach, 1975).

The same goes for nurturance: People who like to take care of others will

probably not indulge in (delinquent) behaviour that can cause harm to others.

An explanation for our finding of delinquents with high levels of nurturance

could, for example, be that these delinquents only committed victimless

offences. It would therefore be interesting to examine the levels of self-

concept in different types of offenders (i.e., violent, property, public order

offences).
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This study has certain limitations. Although we found that low and high

self-concept are related to delinquency, we could not clarify using our data

whether delinquency is related, more specifically, to a positive self-concept,

an inflated self-concept or to both. Future research should focus on the

question of whether it is sufficient to have a positive self-concept to become

delinquent or whether it is necessary to have an inflated view of the self.

Additionally, our results might not be valid for more serious delinquents

but can only be generalised to a relatively ‘normal’ population. It would

therefore be interesting to repeat this study with a population of young

adults with a history of serious delinquent behaviour or with a population of

imprisoned young adults. Furthermore, it could be argued that translating

our variables into dichotomous variables leads to information loss. However,

Bayesian software that can deal with inequality constraints in Latent Class

Analysis for other than dichotomous variables is not yet available. Although

this study provides evidence for the association of delinquency with both low

and high self-concept, we did not examine the causal effects of self-concept

on delinquent behaviour. Longitudinal studies are needed to verify whether

the relationship is causal or not. Furthermore, the process and direction of

influence should be analysed.

A strength of this study was that the presented predictions were pitted

against each other using Bayesian model selection. This technique enabled

a direct comparison of predictions about whether delinquent young adults

have a high or a low self-concept, a distinction that to our knowledge has

never been made before. Moreover, to date, little research has focused on

how gender may account for differences across multidimensional self-concept

constructs.

In sum, by applying the new Bayesian analysis tools, the relative

plausibility of complex alternative hypotheses regarding the association

of level of self-concept and delinquent behaviour could be clearly and

convincingly evaluated and determined. Knowing how and why self-

concept affects delinquent behaviour can be of importance in prevention and
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intervention programmes for delinquents. The current study showed that

delinquents, male or female, can either have a low or a high self-concept.

Programmes should therefore not necessarily focus on improving delinquents’

self-concept, which is often the purpose of current intervention programmes

(Mason, 2003). By gaining knowledge about the process of influence,

programmes designed to prevent and intervene in delinquent behaviour can

be better geared to the development of delinquent behaviour.
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APPENDICES

A Overview of the Self-concept scales

• Global Self-worth. Self evaluations that represent global characteristics

of the individual (e.g. I am a worthwhile person), also referred to as

self-esteem or general self-concept (5 items).

• Scholastic Competence. Self evaluations related to academic expecta-

tions, such as being good at school work, knowing the right answers at

school, finishing homework quickly (5 items).

• Athletic Competence. Self evaluations related to sporting activities,

such as being good at different sports, being good at outdoor sports (5

items).

• Social Acceptance. Self evaluations related to social networks, such as

being popular, having friends and being liked by others (5 items)

• Physical Appearance. Self evaluations related to own physical ap-

pearance, such as liking your own body, being happy with body

composition, being attractive (5 items).

• Behaviour and Conscience. Self evaluations related to committing

offences, such as abiding by the rules, doing things that get you into

trouble and behaving correctly (5 items).

• Close Friendships. Self evaluations related to having close friends

to share things with, such as engaging in activities together, sharing

secrets, and having close friends (5 items).

• Job Competence. Self evaluations related to job experiences, such as

being good at/satisfied with/productive in your work (4 items).
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• Nurturance. Self evaluations related to caring, such as being good at

nurturing others, providing adequately for the needs of others, and

liking to support others (6 items).

• Household Management. Self evaluations related to managing a

household, such as running a household smoothly, being organised and

efficient (4 items).

• Romantic Relations. Self evaluations related to intimate relations,

such as being scared of unrequited love, having difficulty establishing

romantic relations (4 items).

• Sense of Humour. Self evaluations related to humour, such as laughing

at yourself, having a good sense of humour, and laughing at others’

jokes (4 items).

• Relationship with Parents. Self evaluations related to interaction

with parents, such as acting naturally around your parents and being

yourself with parents (3 items).

B Technical Details of the Bayesian Methodology

In this paper confirmatory latent class analysis (C-LCA) is used to analyse

our data (Hoijtink & Boom, 2008; Hoijtink, 2001; Hoijtink & Molenaar,

1997; Laudy, Boom & Hoijtink, 2005; Laudy, Zoccolillo et al., 2005). In

this Appendix we present an introduction to the methodology behind the

software of Laudy et al. We refer more interested readers to the book chapter

of Hoijtink and Boom (2008) for a more technical description of the method.

The second part of this appendix is a summary of the book chapter.

B.1 Bayesian Model Selection

For readers not familiar with Bayesian statistics in general we refer to

S. Lynch (2007). For readers not familiar with Bayesian model selection
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we refer to Van de Schoot, Hoijtink, Mulder et al. (2010) or Hoijtink,

Klugkist and Boelen (2008). Here we present a short introduction to the

main components of Bayesian statistics.

An evaluation of a hypothesis of interest according to Bayes’ formula puts

together three components:

1. Component 1: a set of K hypotheses of interest, Hk (i = 1, . . . , K), is

specified. For each hypothesis an ‘a priori model probability’ p(Hk) is

determined, as a measure of the degree of belief that Hk is true, before

inspection of the data.

2. Component 2: empirical observations, or data D, are considered regar-

ding the degree of support they provide to the different hypotheses.

For each hypothesis the ‘likelihood’ p(D|Hk) is determined as the

probability of that the empirical data, given Hk is true.

3. Component 3: The a priori probabilities p(Hk)(k = 1, . . . , K) and

the likelihoods p(D|Hk) are combined to determine the ’marginal

likelihoods’ p(Hk) × p(D|Hk) whose relative values give the relative

support for each hypothesis after observing the data.

Then, Bayes’ formula is given by

p(Hk|D) =
p(Hk)× p(D|Hk)∑n
i p(Hk)× p(D|Hk)

.

B.2 Confirmatory Latent Class Analysis

For a more detailed introduction of C-LCA we refer to Hoijtink and Boom

(2008). LCA, in general, is used to group responses of persons on items

(i = 1, . . . , I ) into latent classes (j = 1,. . . ,J ) such that persons with

similar responses are assigned to the same class. Let πij indicate the

unconditional probability that a person’s latent class membership equals

group j. Based on theoretical expectations, we can construct a model using
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inequality constraints of the following types πi,j > πi′,j′ and πi,j < πi′,j′ for

i 6= i′ and j 6= j′. The methodology has, un till now, been restricted to

dichotomous data, so that πi,j indicates the probability of the response ‘1’

on item i in class j. The restriction π1,1 > π1,2 implies that the probability

of the response ‘1’ for item 1 is larger for the first latent class compared to

the second latent class.

The models under investigation, as described in the strategy of analysis

section, can be specified in terms of these item probabilities. For example,

let the constraints for the delinquency item ‘stealing money in the home’ (i

= 1) to be equal to π1,1 > π1,2, indicating that for group 1 the probability of

answering ‘yes’ to this question is higher than for group 2. The constraint for

the self-concept item ‘sense of humour’ (i = 16) is π16,2 > π16,1. Using this

approach we can construct statistical hypotheses for each of the predications

under investigation, as shown in Table 7.6.

For the computation of the marginal likelihood, a prior distribution

needs to be specified. Note that this distribution is set to default in the

software and cannot be changed. It is chosen to be non-informative for all

combinations of parameter values allowed by a constrained model. Since

prior information about the models is included in the prior distributions via

inequality constraints, in that respect the priors are informative; however,

the actual distribution used is not. The methodology employs a truncated

prior distribution over the parameter space by: (a) assigning some non-

informative probability distribution to the admissible parameter space where

the inequality constraints imposed on the model hold and (b) assigning a zero

prior probability to the parameter space for which these inequality constraints

are violated. The actual specification of the prior for confirmatory LCA is a

(truncated) Beta(1,1) distribution. The conjugate prior for the class weights

is a Dirichlet distribution parameterised such that a priori all combinations of

weight values are equally likely (see Hoijtink & Boom, 2007, for more details).

The prior takes the value 1 if the model parameters are in accordance with

the constraints imposed by the model and zero if not.
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Since it is not trivial to obtain a sample from a multivariate posterior

distribution, an MCMC procedure, the Gibbs sampler, is applied. The

general algorithm is described by Gelfand et al. (1992) and the direct

application to confirmatory LCA can be found in Hoijtink (1998). The

algorithm renders samples from the joint posterior of the parameters by

repeatedly sampling from the distribution of the parameter at hand, given all

the other parameters. The naive way to do so is to sample from the correct

(non-truncated) Beta distribution until a deviate is sampled that satisfies the

constraints. However, this is fairly inefficient when only a small range of the

distribution is admissible. Inverse probability sampling solves this problem.

The actual computation of the marginal likelihood is based on Kass and

Raftery (1995) and is described in Hoijtink and Boom (2007, p.233). The

marginal likelihood is computed using samples from the prior and posterior

distribution. However, when a constrained model is compared with an

inequality constrained model and this latter model is supported by the

data (i.e., most or all inequality constraints imposed on πi,j are correct)

then the sampling procedure will render approximately similar values for

the constrained and unconstrained marginal likelihood values. This is due

to the fact that the samples are obtained from the posterior distribution.

Since the posterior distribution of the unconstrained model is fairly similar

to that of a posterior distribution based on a perfect model, the values

obtained from these distributions will be fairly similar. Stated otherwise,

in this situation the marginal likelihood is biased against the constrained

model. So, if the value for the marginal likelihood for the constrained model

is close to the marginal likelihood value of the unconstrained model, the first

model should be preferred. This can be confirmed by visual inspection of

the unconstrained latent class membership probabilities to ascertain whether

they fit the constraints imposed on the model.
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Schwartz, S. J. & Branje, S.
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Abstract

This study examined identity development in a five-wave study of 923 early-to-middle

and 390 middle-to-late adolescents thereby covering the ages of 12 to 20. Systematic

evidence for identity progression was found: the number of diffusions, moratoriums and

searching moratoriums (a newly obtained status) decreased, whereas the representation

of the high-commitment statuses (two variants of a (fore)closed identity: “early closure”

and “closure”, and achievement) increased. We also found support for the individual

difference perspective: 63% of the adolescents remained in the same identity status

across the five waves. Identity progression was characterized by seven transitions:

diffusion → moratorium, diffusion → early closure, moratorium → closure, moratorium

→ achievement, searching moratorium → closure, searching moratorium → achievement,

and early closure → achievement.
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8.1 Introduction

Erikson (1968) theorized that one of the main tasks for adolescents is to

develop a coherent sense of identity. Marcia’s (1966) identity status model

has been one of the most important, and widely studied and utilized,

elaborations of Erikson’s views on identity formation. Marcia distinguished

four identity statuses based on the amount of exploration and commitment

the adolescent is experiencing or has experienced. Identity diffusion (D)

indicates that the adolescent has not yet made a commitment regarding

a specific developmental task, and may or may not have explored among

different alternatives in that domain. Foreclosure (F) signifies that the

adolescent has made a commitment without much prior exploration. In

moratorium (M), the adolescent is in a state of active exploration and has

not made significant commitments. Identity Achievement (A) signifies that

the adolescent has finished a period of active exploration and has made a

commitment based on this exploration. Notably, A. S. Waterman (1982)

has proposed that adolescents move from diffusion toward achievement as

they progress through adolescence. The present study was designed to test

this developmental interpretation of the identity status model: are identity

statuses stable individual dispositions or do they change over time? We used

a five-wave longitudinal dataset to study identity formation from early to

late adolescence (ages 12 to 20).

8.1.1 Identity Statuses: Individual Differences

or Development?

In his original contribution, Marcia (1966) conceptualized the identity

statuses in terms of individual differences: “as individual styles of coping with

the psychosocial task of forming an ego identity” (p. 558). In this sense, the

statuses represent different individual states or dispositions. Most identity

researchers have adopted this perspective and view the statuses as stable

individual dispositions. On the other hand, some writers have proposed that
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the statuses constitute a developmental sequence. Indeed, A. S. Waterman

(1982) proposed a “developmental hypothesis” of the identity status model.

This hypothesis involves two assumptions: First, the development of identity

has a direction: development represents “. . .changes in identity status

that constitute progressive developmental shifts” (A. S. Waterman, 1982,

p. 343). Such progressive development involves a movement away from

diffusion and toward achievement. The second assumption is that progressive

development also involves a specific pattern of transitions between identity

statuses: from diffusion into foreclosure or moratorium, and from foreclosure

and moratorium into achievement. Consequently, A. S. Waterman (1982)

assumes that adolescents starting from diffusion move through foreclosure or

moratorium and then into achievement. Most prominent among the identity

transitions that Waterman proposes are D → M or D → F, F → M, and M

→ A.

Overviews of studies using identity status classifications have offered

limited, but consistent, support for the first assumption within Waterman’s

developmental hypothesis. Meeus (1996) reported that, in 17 of 25 studies

reviewed, the prevalence of achievers was higher in the older age groups,

and the prevalence of diffusions was higher in the younger age groups. In

their reviews, both Van Hoof (1999) and Berzonsky and Adams (1999) found

progressive developmental trends in 7 out of 14 longitudinal studies, and

across studies they found a higher prevalence of progressive than regressive

shifts. Findings also revealed that, across studies, more than half of

participants remained in the same identity status during the course of the

study. In a recent meta-analysis of cross-sectional and longitudinal studies,

Kroger (2007) found the prevalence of achievements to be about 1.5 times

higher in emerging adults (ages 22 to 29) as compared to middle adolescents

(aged 15), and the prevalence of diffusions to be about 1.3 times lower.

Support for Waterman’s second assumption is very scarce. A limited num-

ber of longitudinal studies (Adams & Fitch, 1982; Dellas & Jernigan, 1987;

Kroger, 1988; Meeus, Iedema, Helsen & Vollebergh, 1999; A. Waterman,
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Geary & Waterman, 1974; A. Waterman & Goldman, 1976; A. Waterman

& Waterman, 1971) have tested whether transitions out of some statuses

(e.g., diffusion) are more prevalent than transitions into those statuses. The

available findings suggest that, in cases where adolescents do change statuses,

more adolescents move out of diffusion than into it (in about 30% of the

studies), more into than out of achievement (in about 50% of the studies),

more out of than into foreclosure (in about 22% of the studies), and more out

of than into moratorium (in about 29% of the studies). Over-time stability

of the identity statuses was 59%. These patterns suggest that identity

status is more likely to remain stable than to change, and that when change

does occur, this change tends to be reflected in movement out of diffusion,

foreclosure and moratorium, and into achievement.

These findings are not inconsistent with Waterman’s second assumption,

but they also suggest that the assumption has yet to be subjected to

rigorous empirical test. A full test requires that identity status changes

are simultaneously tested in a transition table that incorporates all possible

transitions between identity statuses; in a two-wave study with 4 identity

statuses, this would require a test of a 4 by 4 transition matrix. The studies

cited above only tested whether the number of movers into each status was

different from the movers out of that status. As a result, systematic empirical

tests of the sequential patterns of identity status transitions that Waterman

hypothesized remain to be conducted, for instance, that the chances for the

transition from diffusion to moratorium are greater than for the transition

from diffusion to achievement.

The major aim of the present study is therefore to provide a systematic

account of identity status transitions - both progressive and regressive - over

time. The prevalence of transitions will also provide information regarding

the extent to which identity statuses represent stable individual dispositions

or change over time. We now proceed to presenting our conceptualization

of identity formation, in terms of the processes that underlie the identity

statuses.
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8.1.2 A Dimensional Approach: Commitment,

In-Depth Exploration, and Reconsideration

Our approach focuses on the management of commitments and posits three

dimensions as underlying the process of identity formation. Commitment

refers to strong choices that adolescents have made with regard to various

developmental domains, along with the self-confidence that they derive

from these choices. In-depth exploration represents the ways in which

adolescents maintain their present commitments. It refers to the extent to

which adolescents actively explore the commitments that they have already

made by reflecting on their choices, searching for information about these

commitments, and talking with others about them. Reconsideration of

commitment refers to the willingness to discard one’s commitments and

to search for new commitments. Reconsideration refers to the comparison

of present commitments with possible alternative commitments when the

present ones are no longer satisfactory.

Our model assumes that identity is formed in a process of continuous

interplay between commitment, in-depth exploration, and reconsideration.

Our model holds that individuals enter adolescence with a set of commit-

ments of at least minimal strength in important ideological and interpersonal

identity domains, and that adolescents do not begin the identity development

process with a ‘blank slate’. The initial commitments build upon the way

in which adolescents have resolved the earlier Eriksonian psychosocial crises

in childhood and have developed the ego strengths of hope, will, purpose

and competence (Erikson, 1968). Numerous studies have offered support

for these assumptions. Markstrom, Sabino, Turner and Berman (1997)

and Markstrom and Marshall (2007) found clear links between previous

Eriksonian ego strengths and identity achievement. Moreover, a number

of studies have suggested that early adolescents can possess strong identity

commitments (Adams & Jones, 1983; Archer, 1982; Meeus et al., 1999).

During adolescence, individuals manage their commitments in two ways,

through in-depth exploration and through reconsideration. In-depth ex-
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ploration is a process of continuous monitoring of present commitments

and serves the function to make them more conscious and to maintain

them. Reconsideration is the process of comparing present commitments to

alternative ones and deciding whether they need to be changed. Our model

therefore focuses on the dynamic between certainty (exploration in depth)

and uncertainty (reconsideration).

So, our model differs from Marcia’s model in two respects. First,

it differentiates Marcia’s concept of exploration into in-depth exploration

and reconsideration, which serve to maintain and change commitments,

respectively. Secondly, our model has a stronger process orientation than

Marcia’s model. Marcia views commitments as the outcome of the process

of exploration: after exploring various alternative commitments, adolescents

choose one or more to which they will adhere. In contrast, our model assumes,

as suggested by Grotevant (1987, p. 214), that commitments are formed and

revised in an iterative process of choosing commitments and reconsidering

them. In addition, our model assumes that adolescents regularly reflect upon

their present commitments. In sum, our conceptualization of the process of

identity formation implies a twofold management of present commitments.

This conceptualization of in-depth exploration and reconsideration resembles

the distinction between exploration in depth and exploration in breadth that

was originally suggested by Grotevant (1987) and that has been applied by

(Luyckx, Goossens & Soenens, 2006) in their dual-cycle model of identity

formation.

By including commitment, exploration in depth, and reconsideration

in our model, we sought to capture Erikson’s (1968) dynamic of identity

versus identity diffusion. Commitment and in-depth exploration on the

one hand, and reconsideration on the other hand, are conceptualized as

the two opposing forces within this dynamic: whereas commitment and in-

depth exploration imply attempts to develop and maintain a sense of self

(i.e., identity coherence or synthesis), reconsideration represents questioning

and rethinking this sense of self (identity confusion). To measure this
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three-dimensional model of identity formation, we developed the Utrecht-

Management of Identity Commitments Scale (U-MICS: Crocetti, Berzonsky

& Meeus, 2008) as an extension of the earlier Utrecht-Groningen Identity

Development Scale (U-GIDS).

As was the case with Marcia’s original dimensions of exploration and

commitment, our three-dimensional model can be used to assign participants

to identity status categories. For example, using cluster-analytic procedures

in a cross-sectional study among 1952 Dutch early and middle adolescents,

Crocetti et al. (2008) extracted five statuses from continuous measures

of commitment, in-depth exploration, and reconsideration. Four of these

statuses very closely resembled Marcia’s four statuses. Achievement was

represented as a combination of high commitment, high in-depth exploration,

and very low reconsideration. Moratorium was represented by a combination

of relatively low commitment, moderate in-depth exploration, and relatively

high reconsideration; foreclosure as high commitment, relatively low in-

depth exploration and very low reconsideration; and diffusion as very low

commitment, very low in-depth exploration and very low reconsideration.

In addition to these four statuses, a fifth status also emerged - a com-

bination of high commitment, high in-depth exploration, and very high

reconsideration. Crocetti et al. (2008) labeled this status as searching

moratorium. Adolescents in this status have strong commitments and explore

them intensively, but they are also very active in considering alternative

commitments. Crocetti et al. (2008) found that searching moratoriums

were empirically distinguishable from “classical” moratoriums in terms

of psychosocial functioning - compared to those in classical moratorium,

individuals classified into searching moratorium were characterized by lower

levels of depression, anxiety, and aggression, as well as by more favorable

relationships with parents. These findings underscore the differences between

the two moratorium statuses and suggest that searching moratoriums seek

alternative commitments while already possessing strong commitments,

whereas classical moratoriums do so with weak or no current commitments.
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Within this context, it is important to note that the foreclosed status, as

defined by Crocetti et al. (2008), may carry a different psychological meaning

depending on the developmental pathways through which adolescents arrive

at this status. As a result, in the present study, we differentiate foreclosure

into two subtypes - ‘early closures’ and ‘closures’. When adolescents begin

in the foreclosed status and remain there over time, they can be considered

to be ‘early closures’, given that they have strong commitments that were

established early on, have not tried to consider alternative commitments,

and have not engaged in in-depth exploration of their present commitments.

Adolescents, however, also can move from moratorium to this status of high

commitment, low in-depth exploration, and low reconsideration. In this

case they have considered alternative commitments, are not engaged in in-

depth exploration of present commitments, and should be labeled simply

as ‘closures’. Among adolescents with high commitments and low levels of

in-depth exploration and reconsideration, we expected that the longitudinal

clustering procedures used in the present study would be able to distinguish

between closures and early closures.

The differentiation between closures and early closures is intended to

highlight the similar profile, but different developmental roots, of these two

subtypes of foreclosure. As a result, when we refer to both types of closure,

we use the label early closure/closure, ECC. Separate labels - EC for early

closure and C for closure - are used to refer to the distinct statuses.

Taken together the findings reported by Crocetti et al. (2008) suggest that

our three-dimensional model yields identity statuses that are conceptually

quite similar to those proposed by Marcia. Therefore, as is the case with

Marcia’s statuses, the statuses found with the three-dimensional model can

be ordered on an identity status continuum. Diffusion and achievement

represent the least and most mature endpoints of the continuum, respec-

tively, with moratorium, searching moratorium and early closure/closure

representing intermediate statuses: D - M - SM - ECC - A. Therefore, the
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identity status continuum generated by the three-dimensional model offers

the potential to study change and stability of identity status.

8.1.3 The Present Study: Aims and Hypotheses

The primary goal of the present study was to evaluate the extent to which

identity statuses represent stable individual dispositions versus states into

and out of which individuals move over time during adolescence. Both

assumptions of Waterman’s ‘developmental hypothesis’ were evaluated here.

Support for the first assumption would take the form of decreases in diffusion,

and increases in achievement, over time. Support for the second assumption

would take the form of the progressive transitions that Waterman proposed:

D → M, D → F, F → M, and M → A. In the terminology used within our

identity model, these transitions would be labeled as D→M, D→ ECC, ECC

→ M, and M→ A. Based upon prior literature, we expected to find support

for the first assumption. Literature examining the second assumption is

fairly scarce, so we treated this as an exploratory research question. These

issues were examined using data from a five-wave study, including an early-

to-middle adolescent cohort and a middle-to-late adolescent cohort, thereby

covering the ages from 12 to 20.

We also examined gender differences in identity statuses and identity

transitions. In a review of identity status studies between 1966-1995 Kroger

(1997) discussed gender differences in overall, interpersonal and ideological

identity. As is common in the identity status literature, she defined

overall identity as ego strength and ego synthesis that individuals derive

from commitments in a combination of life domains, and interpersonal and

ideological identity as ego strength and synthesis that individuals derive from

interpersonal and educational or work or political commitments, respectively.

Kroger reported no gender differences in overall identity, but she did find that

females were more often in achievement in interpersonal identity than males,

and that in high school samples males seemed to move into the direction

of achievement later than females (Kroger, 1997, p. 752 and p. 754,



174 CHAPTER 8. ADOLESCENT IDENTITY FORMATION

respectively). Studies conducted since 1995 have replicated these findings

with regard to interpersonal identity domains such as friendships (Lewis,

2003) and also have found a higher prevalence of females in achievement,

along with a higher number of males in diffusion both in overall identity

(Guerra & Braungart-Rieker, 1999) and in ideological identity domains

(Schwartz & Montgomery, 2002). This pattern of findings suggests that, since

the 1960s, gender differences appear more often in interpersonal identity than

in overall and ideological identity, and more often in high school samples than

in college/university samples. Moreover, the more recent findings suggest

that gender differences also may be more likely to appear in overall and

ideological identity from the late 1990s on.

In the present study, we used a Dutch sample where a majority of

participants were in high school, and we used and a measure of overall identity

that combines interpersonal and ideological domains. In the Netherlands,

females may have stronger educational commitments, because they have

tended to perform better in school than males since the late 1990s (Statistics

Netherlands, 2008b, 2008c). Additionally, Dutch females have been found

to have stronger interpersonal commitments than their male counterparts

(Meeus & Deković, 1995). Given the age and the nationality of our

participants and our use of a combination of interpersonal and ideological

domains to tap overall identity, we therefore would expect females, compared

to males, to be more strongly represented in achievement and less so in

diffusion.

8.2 Method

8.2.1 Participants

Data for this study were collected as part of an ongoing research project

on COnflict And Management Of RElationships (CONAMORE; Klimstra,

Hale, Raaijmakers, Branje & Meeus, 2009), with a one-year interval between

each of the five available waves. The longitudinal sample consisted of
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1,313 participants divided into an early-to-middle adolescent cohort (n

= 923; 70.3%), who were 12.4 years of age (SD = .59) on average at

baseline, and a middle-to-late adolescent cohort (n = 390; 29.7%) with an

average age of 16.7 years (SD = .80) during the first wave of measurement.

Because both age groups were assessed during five measurement waves, a

total age range from 12 to 20 years was available. The early to middle

adolescent cohort consisted of 468 boys (50.7%) and 455 girls (49.3%), and

the middle to late adolescent cohort consisted of 169 boys (43.3%) and 221

girls (56.7%). In both the younger and older cohorts, the vast majority

of adolescents (85.1% and 84.3%, respectively) indicated that they were

living with both their parents. The remainder of adolescents lived with

their mother (7.9% and 7.2% in the younger and older cohort, respectively)

or elsewhere (e.g., with their father, with one biological parent and one

stepparent, or with other family members). The composition of the two

cohorts did not significantly differ with regard to ethnicity. In the younger

cohort, 83.4% identified themselves as Dutch, and 16.6% indicated that

they belonged to ethnic minorities (e.g., Surinamese, Antillean, Moroccan,

Turkish). In the older cohort, 87.4% of participants were Dutch, and 12.6%

were ethnic minorities. In the year when the current study was initiated

(2001), 21% of all Dutch early to middle adolescents, and 22% of the Dutch

middle to late adolescents, belonged to ethnic minority groups (Statistics

Netherlands, 2008a). Thus, ethnic minorities were slightly underrepresented

in our sample. With regard to education, all participants initially were in

junior high and high schools. Given the Dutch educational system, most

participants switched schools at least once during the study. Specifically,

participants in the younger cohort switched from junior high school to

high school, whereas most of the participants in the older cohort switched

from high school to college/university. Because of the sample recruitment

procedure, 100% of our middle to late adolescents were in high school

or college, whereas national demographic statistics (Statistics Netherlands,

2008a), StatisticsNetherlands2008b, StatisticsNetherlands2008c) reveal that
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96% of the Dutch middle to late adolescents was in some form of education

during the time period covered by the current study (i.e., 2001-2005).

Sample attrition was 1.2% across waves: in waves 1, 2, 3, 4, and 5 the

number of participants was 1,313, 1,313, 1,293, 1,292 and 1,275, respectively.

Missing values were estimated in SPSS, using the expectation maximization

(EM) procedure. Little’s Missing Completely At Random (MCAR) Test

produced a normed χ2 (χ2/df) of 1.55, which, according to (Bollen, 1989),

indicates that the data were likely missing at random, and that it is safe to

impute missing values.

8.2.2 Procedure

Participating adolescents were recruited from various high schools in the

province of Utrecht, The Netherlands. Participants and their parents received

an invitation letter describing the research project and goals and inviting

them to participate. More than 99% of the families who were approached

signed the informed consent form. During regular annual assessments,

participating adolescents completed questionnaires at school or at home.

Confidentiality of responses was guaranteed. Adolescents received ¿10

(approximately US $13) for each wave in which they provided data.

8.2.3 Measures

Identity. Identity was assessed using the U-MICS (Crocetti et al., 2008).

The U-MICS consists of 13 five-point Likert-scale items (1 = completely

untrue to 5 = completely true), measuring identity in three dimensions:

commitment, in-depth exploration, and reconsideration of commitment.

Within the ideological and interpersonal domains, the U-MICS consists of

5 items measuring commitment, 5 items measuring in-depth exploration of

present commitments, and 3 items measuring reconsideration of commitment.

Sample items for the ideological and interpersonal domain include respec-

tively “My education/best friend makes me feel confident about myself”

(commitment), “I often think about my education/best friend” (in-depth
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exploration), and “In fact, I’m looking for a different education/a new best

friend” (reconsideration of commitment). Although the U-MICS measures

identity in different domains, the instrument can be used to assess overall

identity. Crocetti et al. (2008) included both ideological (education) and

interpersonal (best friend) domains and demonstrated the internal factorial

validity of the three-dimensional model across domains. In the present study,

Cronbach’s alphas for commitment, in-depth exploration and reconsideration

of commitment ranged in both cohorts from .91 to .93, .88 to .89, and .84 to

.94 across waves, respectively.

8.2.4 Analytic Strategy

To address our research questions, we utilized two applications of the general

latent class model: latent class analysis (LCA) and latent transition analysis

(LTA). Because we wanted to compare the prevalence of the various identity

statuses between the early-to-middle and middle-to-late cohorts, we assumed

measurement invariance across cohorts, that is we restricted the profiles of

the five identity classes on the three identity dimensions to be the same across

cohorts. LCA is a person-centered analytic strategy that is a confirmatory

version of cluster analysis. LCA groups individuals into classes based on

empirically distinct patterns of scores on the variables (in this case the three

identity dimensions) used to create the classes. LCA of continuous variables

is sometimes referred to as latent profile analysis. For simplicity, we use

the term LCA here. Like confirmatory factor analysis, LCA generates both

measurement and structural parameters (Nylund, Asparouhov & Muthén,

2007). The continuous scores for each of the identity variables within

each class represent the measurement parameters, whereas the structural

parameters refer to the class membership probabilities assigned to groups of

individuals. Unlike cluster analysis, LCA offers fit statistics and significance

tests to determine number of classes, it assigns class membership based on

class probabilities, thereby taking uncertainty of membership, or error, into

account. LCA has been found to be superior to cluster analysis in several
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Monte Carlo studies (Reinke & Ialongo, 2008). In the present study, we

applied LCA to test whether the five hypothesized identity statuses would

emerge in each of the 5 waves of measurement.

LTA represents a longitudinal extension of LCA (for a recent overview

of LTA, see Kaplan, 2008). LTA calculates patterns of stability and change

over time in the form of movement or transitions between classes (identity

statuses in this case). Like LCA, LTA models use class-specific parameters

(the continuous scores for each of the identity variables within each class)

as measurement parameters, and class probabilities as structural parameters

to estimate the number of participants in each of the classes. To model

change over time, LTA adds a second set of structural parameters, latent

transition probabilities, to the latent class model. In a two-wave LTA,

for example, transition probabilities refer to the probability of moving into

class Y in wave 2 conditional on having been in class X in wave 1. These

transition probabilities range between 0 and 1. In sum, then, LTA offers

two types of structural parameters: (a) varying numbers of participants in

class across waves, indicating increase or decrease in class size over time,

and (b) transitions of individuals between classes that carry these changes of

class size. Therefore LTA is appropriate for evaluating both assumptions of

Waterman’s developmental hypothesis, the hypothesized decrease of diffusion

and increase of achievement, and the hypothesized identity transitions that

carry this increase or decrease over time.

LTA results can be converted into contingency tables summarizing the

prevalence of classes (identity statuses) across waves. We use Bayesian Model

Selection using (in)equality constraints between the parameters of interest

to evaluate these contingency tables. For a more detailed description of

this method, readers are referred to Laudy and Hoijtink (2007). Using

constraints may express prior information explicitly. This way we can

evaluate the likelihood of certain patterns of increases and decreases in

identity status membership. Moreover, expected differences in prevalence
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of identity statuses between early-to-middle and middle-to-late adolescents

and males and females can be evaluated.

The results of the Bayesian Model Selection are expressed in terms of

Bayes factors (BFs), representing the amount of evidence in favor of the

model at hand compared to another model, and posterior model probabilities

(PMPs), representing the probability that the model at hand is the best

among a set of finite models after observing the data. Posterior model

probabilities of a model are computed by dividing its BF by the sum of

all BFs.

8.3 Results

We present our results in 4 steps. First we apply cross-sectional LCA

to explore the number of classes (identity statuses) within each of the 5

waves. Second, we select the best-fitting five-wave LTA model in a number of

successive steps. Because we wanted to compare the prevalence of the various

identity statuses between the early-to-middle and middle-to-late cohorts, we

assumed measurement invariance across cohorts by restricting the profiles of

the five identity classes on the three identity dimensions to be the same across

cohorts. Third, we apply Bayesian evaluations of the contingency tables

generated by the final LTA model. The Bayesian evaluations are intended to

address four research questions:

1. Is there a differential increase and decrease of identity statuses across

time?

2. Are there differences in the prevalence of statuses across time between

the early-to-middle and middle-to-late adolescents?

3. Likewise, are there differences in the prevalence between and males and

females?

4. Is there a differential increase and decrease of identity statuses over

time between males and females?
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Fourth, we globally describe the sequence of identity statuses in five-wave

identity status trajectories (for instance MMAAA).

8.3.1 Cross-Sectional Latent Class Analysis

For each of the five waves, we estimated a set of cross-sectional LCA’s on

the entire sample, including all three identity dimensions simultaneously.

Analyses were performed using Mplus. We used four criteria to determine

the number of latent classes (Nagin, 2005). First, a solution with k classes

should result in improvement of model fit compared to a solution with k

- 1 classes, indicated by a decrease of the Bayesian Information Criterion

(BIC). Second, adding an additional class should lead to a significant increase

of fit, as indicated by the bootstrap Lo-Mendel-Rubin likelihood ratio test

(BLRT) (Nylund et al., 2007). Third, entropy - a standardized measure

of classification of individuals into classes, based upon the posterior class

probabilities - of the final class solution should be acceptable. Entropy values

range from 0 to 1, with values of .70 or higher indicating good classification

accuracy (Reinecke, 2006). Fourth, we evaluated the content of the classes

in the various solutions. If an additional class in a solution with k classes

was found to be a slight variation of a class already found in a solution with

k - 1 classes, we would choose the most parsimonious solution.

As expected, we found the five-class solution to be superior to the one-

to four-class solutions on both fit indices across waves. BIC of the five-class

solutions was at least 56.21 lower than that of one-, two-, three-, or four-

class solutions and only in wave 5 did the BLRT indicate that the five-class

solution did not fit significantly better than the four-class solution (p = .14).

Entropy (E) for the five-class solution ranged between .74 and .81, indicating

good classification accuracy. Adding a sixth class did not provide additional

unique information, given that the sixth class was small (10 > n > 27 in

each wave) and appeared to represent a variation of one of the other classes.

Therefore, we decided to use a five-class model in the LTA’s.
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Figure 8.1: Profiles of the identity statuses on the three identity dimensions across waves.

Note: For reasons of presentation the scores of the identity dimensions of the statuses

were centered at a common scale point (2.75). Early closure/c = Early closure/closure.

8.3.2 Five-Wave Latent Transition Analysis

As part of the LTA, we assumed measurement invariance in the five-class

LCA solutions across measurement waves. That is, we restricted the

profiles of the five identity classes on the three identity dimensions to be

equivalent across five waves. We also restricted the variances of the three

identity dimensions to be equivalent across classes across waves. Assuming

measurement invariance ensures that the profiles of the classes are the same

across waves, and allows for a straightforward interpretation of transition

probabilities (see Nylund, Muthén. B., Bellmore & Graham., 2006). Figure

8.1 displays the profiles of the statuses. Four of the classes (achievement,

moratorium, early closure/closure, and diffusion) strongly resemble Marcia’s

original statuses. The fifth status, searching moratorium, combines very

strong commitment with high levels of in-depth exploration and very high

levels of reconsideration.

We developed the final LTA model in two steps. We will describe these

steps and then present the results of the final model. In both steps, we
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selected the model with the lowest BIC value. The BLRT is not available for

LTA models.

LTA step 1: Non-stationary versus stationary transition probabilities. In

the first modeling step, we compared a model with non-stationary transition

probabilities between adjacent waves to a model with stationary transition

probabilities. A model with non-stationary transition probabilities assumes

that the likelihoods of transitions between classes are different between waves.

In contrast, a model with stationary transition probabilities assumes that

the probabilities are equal across waves. Results indicated no significant

differences in the transition probabilities across time. The BIC for the LTA

model with stationary transition probabilities (32,895) was lower than BIC

of the model with non-stationary transition probabilities (33,112). This

suggests that adolescents make transitions between identity statuses at the

same pace across the four transitions points. As a result, there seems to be

a very regular pattern of identity development. Entropy of the stationary

model was very good: .85.

LTA step 2: Are there age and gender differences in identity status

transitions? We added covariates to the model with stationary transition

probabilities to describe heterogeneity in transitions between statuses. In

the first model, we included cohort as covariate to test whether transitions

into and out of identity statuses were different between the early-to-middle

and middle-to-late adolescents. The second model tested whether transitions

were different for males and females. The first model comparison indicated no

significant differences in the transition probabilities between the cohorts. The

BIC for the LTA without cohort as covariate (32,895) was lower than BIC of

the model with covariate (32,901). The second model comparison indicated

significant gender differences in transition probabilities. The BIC for the

LTA with gender (32,894) was lower than BIC of the model without gender

(32,895), indicating that the model with gender was 2.72 times more likely

than the model without gender (Nagin, 1999). So, rate of change into and

out of identity statuses was not different for early-to-middle and middle-to-
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late adolescents, but was for males and females. Below, we present follow-up

Bayesian analyses to clarify the gender differences.

Increase and decrease of identity statuses over time. Table 8.1 displays

the cell sizes for each the five identity statuses for waves 1, 2, 3, 4, and 5

based on the final LTA model. Findings for the whole sample are in the upper

panel of the Table. The Table indicates a systematic decrease in diffusion

(D), moratorium (M) and searching moratorium (SM) over time, along with a

systematic increase in early closure/closure (ECC) and achievement (A). The

Table also suggests that early closure/closure is the most prevalent status:

between 50.6% and 55.2% of the sample was classified into that status across

waves. A majority of the adolescents had relatively strong commitments

along with relatively low levels of in-depth exploration and very low levels of

reconsideration. The systematic pattern of increases and decreases in status

membership is also found across both cohort and gender (panels 2, 3, 4 and

5 of Table 8.1, respectively).

We applied Bayesian Model Selection (Laudy & Hoijtink, 2007) to the

upper panel of Table 8.1 to test which of three alternative models of increase

and decrease of identity status best fit the data. Model 1 assumed no increase

or decrease of identity statuses across five waves, whereas Model 2 assumed

a decrease of D, M, and SM and an increase of ECC and A. In Model 3,

the unconstrained model, the distribution of statuses over time was allowed

to vary freely. The results are in Table 8.2. First, Models 1 and 2 were

compared with the unconstrained (Model 3). The BFs for Models 1 and

2 imply that after observing the data, these models are approximately 270

and 7,500 times as likely, respectively, as the unconstrained (Model 3). The

second comparison revealed that Model 2 is 27.64 times as likely as Model 1.

Posterior model probabilities of models 1, 2, and 3 are .03, .97 and < .001,

respectively. Note that we assume that before observing the data each model

is equally likely. In sum, Model 2, assuming decreases in D, M and SM and

increase in ECC and A, was by far the best-fitting model. This model appears

to support the first assumption of Waterman’s ‘developmental hypothesis’.
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Table 8.1: Size of Identity Status Classes for the Whole Sample, Early-to-Middle and

Middle-to-Late Adolescents, and Males and Females. Findings Based on the Final

Stationary 1-year Interval Model

Identity status

Diffusion Moratorium Searching moratorium Early closure/c Achievement

Wave n % n % n % n % n %

Total sample (N = 1313)

1 117 8.9 215 16.4 78 5.9 665 50.6 238 18.1

2 106 8.1 218 16.6 67 5.1 676 51.5 246 18.7

3 97 7.4 211 16.1 60 4.6 684 52.1 261 19.9

4 90 6.9 186 14.2 41 3.1 713 54.3 283 21.6

5 82 6.2 183 13.9 23 1.8 725 55.2 300 22.

Early-to-middle adolescence (N = 923)

1 86 9.3 159 17.2 70 7.6 455 49.3 153 16.6

2 76 8.2 162 17.6 64 6.9 463 50.2 158 17.1

3 68 7.4 146 15.8 57 6.2 481 52.1 171 18.5

4 66 7.2 127 13.8 36 3.9 505 54.7 189 20.5

5 61 6.6 131 14.2 23 2.5 510 55.3 198 21.5

Middle-to-late adolescence (N = 390)

1 31 7.9 56 14.4 8 2.1 210 53.8 85 21.8

2 30 7.7 56 14.4 3 0.8 213 54.6 88 22.6

3 29 7.4 65 16.7 3 0.8 203 52.1 90 23.1

4 24 6.2 59 15.1 5 1.3 208 53.3 94 24.1

5 21 5.5 52 13.3 0 0.0 215 55.1 102 26.2

Males (N = 637)

1 69 10.8 136 21.4 55 8.6 292 45.8 85 13.3

2 61 9.6 141 22.1 45 7.1 300 47.1 90 14.1

3 59 9.3 142 22.3 41 6.4 298 46.8 97 15.2

4 57 8.9 124 19.5 29 4.6 311 48.8 116 18.2

5 51 8.0 115 18.1 17 2.7 328 51.5 126 19.8

Females (N = 676)

1 48 7.1 79 11.7 23 3.4 373 55.2 153 22.6

2 45 6.7 77 11.4 22 3.3 376 55.6 156 23.1

3 38 5.6 69 10.2 19 2.8 386 57.1 164 24.3

4 33 4.9 62 9.2 12 1.8 402 59.5 167 24.7

5 31 4.6 68 10.1 6 0.9 397 58.7 174 25.7

Note. Early closure/c = Early closure/closure.
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Transitions between identity statuses. Transition probabilities of identity

status change across one-year intervals, as found in the final stationary model,

are in Table 8.3. The transition probabilities of identity change between

waves 1 and 5 are displayed on the right-hand side of the Table. The 4-

year probabilities were calculated using the contingency tables of waves 1

and 5 as generated by the final LTA model. We added these longer-term

transition probabilities as a way of elucidating change in identity status across

a longer period of time. As expected given the consistency of identity status

transition probabilities across time, the transitions during 1-year intervals

strongly parallel the transitions during 4-year intervals. Transitions with

a relatively high frequency during 1-year intervals were also highly likely

during the 4-year interval. Not surprisingly, stability of identity statuses was

greater during 1-year intervals than during the 4-year interval, and transitions

between identity statuses were more likely to have occurred across four years

than across one year.

Seven specific findings warrant mention here. First, 1-year stability is

always more likely than change in identity status. This is also true for four-

year stability of M, ECC, and A, and with two exceptions for the four-

year stability of D and SM, as compared to 4-year identity status change.

Notably, 1-year and 4-year stability probabilities for ECC and A are very

substantial. Second, very few adolescents shifted from M, ECC, and A

into D or SM; during 1-year intervals 4 percent or fewer of the adolescents

made this transition, and during the 4-year interval, 5 percent or fewer did

so. Third, transitions into moratorium are limited: during 1-year intervals,

9% of diffusions and 23% of searching moratoriums moved into moratorium,

whereas during the 4-year interval 11% of diffusions and achievers, and 26%

of searching moratoriums, moved into moratorium. Fourth, the percentage

of transitions into early closure/closure is substantial: between 8 and 19% of

the adolescents in D, M, SM and A moved into early closure/closure during

1 year, and between 22 and 45% did so over the four years of the study. The

likelihood of moving from D to ECC was very substantial, 19 and 45% during
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1 and 4 years, respectively. Given the distinction we have made between early

closure and closure in the introduction, the transition out of diffusion should

be labeled as D→ EC, given that adolescents who make this transition have

never reconsidered identity alternatives or explored present commitments in

depth. Similarly, remaining in the early closure status should be labeled as

EC → EC. However, adolescents who move from SM, M, or A into ECC

have considered identity alternatives or have explored present commitments

in depth. Therefore these transitions should be labeled as SM → C, M

→ C, and A → C. These refer to adolescents who once maintained high

levels of in-depth exploration (in the case of regression from achievement

to closure) or reconsideration (in the case of movement out of either of the

moratorium statuses) and now report low levels of both in-depth exploration

and reconsideration. Fifth, few adolescents move from D to A: 2 and 5%

during 1 and 4 years, respectively. Sixth, transitions from EC, M, and

especially SM into A are quite prevalent: from 5 to 19% and 11 to 32% over

1 and 4 years, respectively. This suggests that the likelihood of a diffused

adolescent reaching achievement during adolescence is very low. Seventh,

most of the transitions are progressive: from D, M and SM into the direction

of ECC and A. But there are also “regressive” transitions: notably from A

into M and C, and from SM into M: 5 and 11%, 11 and 26%, and 22 and

26% during 1 and 4 years, respectively.

In addition, to check whether the stability of the findings is affected by

the difference in sample size between cohorts, we estimated a replication of

our final stationary model, controlling for sample size differences between

cohorts by weighting the cohorts equally in the model. This was done by

assigning the weight of 1 to each of the 923 cases of the younger cohort

and the weight of 2.366 to each of the 390 cases in the older cohort. The

replication confirmed all the earlier reported findings and suggests that they

were not affected by difference in sample size between cohorts.

Identity status trajectories. Inspection of the five wave identity status

trajectories revealed two general patterns. First, 822 adolescents were in
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the same identity status in waves 1 and 5. The vast majority of the 822

participants (93.7%, or 63% of the total sample) stayed in the same status in

all waves. Second, 491 adolescents were in different statuses in waves 1 and 5:

78.2% of them made only one status transition, 20.4% made two transitions,

and 1.4% made three or more transitions during the five waves of the study.

So the majority of identity status changers made only one transition. We also

found that 11% of the change trajectories were two-transition trajectories in

which adolescents passed through SM or M as transitory identity statuses.

These findings partially support the second assumption of Waterman’s

developmental hypothesis. We indeed found three of the four progressive

identity status trajectories that Waterman hypothesized, notably D → M,

D → EC, and M → A. We did not find general support for Waterman’s

assumption that adolescents starting from diffusion move through more than

two identity statuses to reach achievement. We elaborate further on these

issues in the discussion.

Age differences. In the second step of LTA modeling, we did not

find differences between age groups in rate of change into and out of

identity statuses. Table 8.1, second and third upper panels, summarizes

this similar and regular identity change for both cohorts. This table also

shows systematic cohort differences in the prevalence of the statuses in waves

1 to 5. In all waves, the number of diffusions, moratoriums, and searching

moratoriums is higher in the younger age group, whereas the number of early

closures/closures and achievers is lower. There are a few exceptions to this

general pattern: in waves 3 and 4, the prevalence of moratoriums was lower,

and in waves 4 and 5, the prevalence of early closures/closures was higher

in the younger age group. We applied Bayesian Model Selection to evaluate

which of three alternative models of the prevalence of the identity statuses

in waves 1 and 5 in both cohorts provided the best fit to the data. Model 1

assumed no difference in prevalence between the cohorts, whereas Model 2

assumed a higher prevalence of D, M and SM in early-to-middle adolescence

and a higher prevalence of ECC and A in middle-to-late adolescence. Model
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3, the unconstrained model, did not specify the distribution of statuses across

cohorts. Table 8.2 presents the findings. The BFs imply that Model 1 is 250

times less likely than Model 3, and that Model 2 is 211.50 times more likely

than Model 3. Moreover, Model 2 is 52,875 times as likely as Model 1.

Posterior model probabilities of models 1, 2, and 3 are < .001, .99 and <

.01, respectively. Replication of the same Bayesian models for waves 2, 3 and

4 revealed similar differences between age groups. We do not include a full

report of these models to save space. These findings show that the middle-

to-late adolescents are generally in more “progressive” identity statuses than

the early-to-middle adolescents.

Finally, Table 8.1 makes clear that the patterns of increases and decreases

in identity status memberships unfold quite systematically from early to

middle and middle to late adolescence. Diffusion decreases from 9.3 to

6.6% in early-to-middle adolescence, and from 7.9 to 5.5% in middle-to-

late adolescence. For moratorium, the percentages decrease from 17.2 to

14.2% and from 14.4 to 13.3%, and for searching moratorium the percentages

decrease from 7.6 to 2.5 and from 2.1 to 0%, whereas the percentages for

achievement rise from 16.6 to 21.5 and from 21.8 to 26.2%. Percentages for

the early closure/closure status rise from 49.3 to 55.3 in the younger cohort

but are fairly stable in the older cohort (53.8 to 55.1). So, for diffusion,

moratorium, and searching moratorium, a systematic decrease is evident from

early to late adolescence; for achievement we observe a systematic increase;

and for the early closure/closure identity status, there appears to be an

increase followed by stabilization at a relatively high level.

Gender Differences. In the second step of LTA modeling, we found gender

differences in identity status transitions. Inspection of the separate 1-year

transition tables indicated the general pattern of identity transitions to be

the same for males and females. The seven primary results that we found

for the transitions in the whole sample appeared to generalize across gender.

However, one systematic gender difference appeared: in 4 of the 5 statuses

(M, SM, ECC, and A), 1-year stability was more likely in females than in
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males - percentage differences were 1%, 12%, 2%, and 4%, respectively. To

interpret this finding, we estimated two sets of Bayesian models on the two

lower panels of Table 8.1. In the first set, we evaluated gender differences in

the prevalence of identity statuses in waves 1 and 5. Model 1 assumed no

difference in prevalence between males and females, whereas Model 2 assumed

a higher prevalence of D, M and SM in males and a higher prevalence of

ECC and A in females. Model 3, the unconstrained model, did not specify

any distribution of the statuses for either gender. Table 8.2 presents the

findings. The BFs indicated that Model 1 is approximately 100 times less

likely than Model 3, and that Model 2 is about 510 times more likely than

Model 3. Moreover, Model 2 was 51,073 times more likely than Model 1.

Posterior model probabilities of models 1, 2, and 3 were< .001, .99 and< .001

respectively - and as a result, we retained Model 2. Replication of the same

Bayesian models for waves 2, 3 and 4 revealed the same patterns of differences

between males and females. We include no full report of the models to save

space. These findings show that females are generally classified into more

“progressive” identity statuses than males.

In the second set of Bayesian models, we evaluated three alternative

models of gender differences in increases and decreases of identity status

membership between waves 1 and 5. Model 1 assumed no gender differences

in likelihood of increase or decrease in the identity statuses over time, whereas

Model 2 assumed a larger likelihood of decrease of D, M, and SM in males

than in females and a larger likelihood of increase of ECC and A in males

than in females. Model 3, the unconstrained model, did not specify any

pattern of increase or decrease of identity statuses for either gender. Table

8.2 presents the findings from these model comparisons. The BFs imply

that Model 1 was 250 times less likely to represent the data adequately than

Model 3, and that Model 2 was about 5 times more likely than Model 3.

Moreover, Model 2 was 1,322.5 times more likely to represent the data than

Model 1. Posterior model probabilities for models 1, 2, and 3 were < .001,

.84, and .16, respectively. These findings show that decreases in D, M and
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Figure 8.2: Transitions of identity progression, regression and stability. Note: D→ EC, D

→ M and M → A were hypothesized by Waterman (1982) as progressive transitions, and

A → M as regressive transition. Percentages of the number of participants that changed

statuses between wave 1 and wave 5 can be found in the right-hand side of Table 8.3 (for

example, .11 signifies that 11 percent of the participants who were in diffusion in wave 1

moved to moratorium in wave 5).

SM, and increases in ECC and A, are more likely in males than females.

Taken together, these findings indicate that females are in more advanced

and more stable identity statuses than males, but that males may catch up

during later adolescence.

Conclusion. Figure 8.2 summarizes the main findings of the final LTA

model. The figure incorporates only those identity transitions with 4-year

probabilities of .10 or above. The figure is based on an additional Bayesian

Model Selection, in which we constrained the probabilities of the 4-year

transitions below .10 (see Table 8.3) to be zero and the probabilities of the

other transition to be greater than zero. This model was clearly superior to

a model in which the transitions were allowed to vary freely; posterior model

probabilities of both models were .99 and .01, respectively. A comparable

model comparison of the probabilities of the 1-year transitions replicated

these findings. The figure clearly shows that progressive identity transitions

outnumber regressive transitions. Identity progression is represented by seven
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transitions: D→ M, D→ EC, M→ C, M→ A, SM→ C, SM→ A and EC

→ A. Identity regression is represented by three transitions: A → M, A →
C, and SM → M.

8.4 Discussion

8.4.1 Identity Formation: Progression and Stability

The present study was designed to test the extent to which identity status

is a stable individual disposition or whether it changes over time. Our

findings revealed a steady increase of A and ECC, and a steady decrease

of D, M and SM, in both cohorts. These findings support the first

assumption of Waterman’s (1982) developmental hypothesis and document

identity progression: growth of the high-commitment statuses (ECC and A),

decrease in the number of adolescents who do not address identity issues

(D), and decrease in the proportion of adolescents who are in the process of

finding their identity (M and SM). Taken together, these findings clearly

demonstrate identity maturation during adolescence, and they converge

with the results of Klimstra et al. (2009), who have provided evidence

for systematic personality maturation between early and late adolescence.

Support for Waterman’s second hypothesis was also substantial, but less

consistent: we found support for three of the four progressive identity

transitions that Waterman hypothesized, notably D to EC, D to M and M

to A, and for one of the four regressive transitions he proposed: notably A to

M. On the other hand, we also found substantial support for the individual

difference perspective: 63% of the adolescents remained in the same identity

status in wave 1 and 5. This percentage is remarkably similar to the 59%

found in the longitudinal identity status studies reviewed in the introduction.

So our study replicates earlier findings on change and stability of identity.

We offer two interpretations for the high stability of identity status that we

found. The first interpretation assumes that changes in identity may be more

prevalent in emerging adulthood than in adolescence due to more frequent



194 CHAPTER 8. ADOLESCENT IDENTITY FORMATION

and intense consideration of adult roles. Some support for this position has

been obtained in a recent meta-analysis of personality change by Roberts,

Walton and Viechtbauer (2006), who concluded that personality change is

much more prevalent in young adulthood than in adolescence. The second

assumption states that the universality of the identity conflict and subsequent

identity formation has been wrongly and too commonly assumed. Support

for this interpretation has been found in the review by Kroger (2007), who

showed across cross-sectional and two-wave longitudinal studies no more than

25% of participants to be in moratorium. Future longitudinal studies from

early adolescence into emerging adulthood are needed to more thoroughly

test these alternative interpretations.

Another major finding is that Marcia’s (1966) original four statuses -

achievement, moratorium, foreclosure (here ECC), and diffusion - indeed

emerged empirically as identity statuses at all 5 waves along with a new

status: searching moratorium. Our findings strongly suggest that searching

moratorium is an early and middle adolescent status that disappears in late

adolescence. So, in late adolescence (corresponding to the age group that

Marcia used in his own research), we empirically extracted Marcia’s four

identity statuses. It is also of interest to note that the five-wave LTA model

was characterized by high classification accuracy (E = .85).

Interestingly, we found the early closure/closure status to be the most

prevalent in both cohorts. A majority (80%) of the 725 adolescents who

were in this status in wave 5 can be considered to be early closures: they

stayed in this status in all waves (n = 530), or made the transition from

diffusion to early closure (n = 53). They are labeled as early closures

because they have not considered identity alternatives and have continued

to maintain relatively strong commitments over time. A minority (20%)

of the adolescents with an early closure/closure profile transition from

moratorium, searching moratorium, or achievement. They have considered

identity alternatives and therefore cannot be defined as early closures. We

have labeled them as closures. At present they possess relatively strong
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commitments and maintain them in an automatic way. They did not,

however, always do so. We will discuss this issue further in the paragraph

on limitations and suggestions for further research.

8.4.2 Identity Transitions

Figure 8.2 summarizes the main findings of the final LTA model. The

transitions depicted in this table are predominantly progressive. Identity

progression is represented by seven transitions: D→M, D→ EC, M→ C, M

→ A, SM→ C, SM→ A, and EC→ A. Identity regression is represented by

three transitions: A→M, A→ C, and SM→M. The seven progressive tran-

sitions indicate different changes in the identity configurations of adolescents:

starting to think about alternative commitments (D→ M), making stronger

commitments (D → EC), making stronger or much stronger commitments

along with decreases in considering alternative commitments (M→ C and M

→A, respectively), making much more secure (SM→ C) or much more secure

and active (SM → A) commitments, and making more active and strong

commitments (EC → A). The three regressive identity transitions indicate

discarding commitments and starting to consider alternative ones (A → M),

moving from strong and active commitments to more rigid and less active

commitments (A→ C), and discarding commitments while maintaining high

levels of reconsideration (SM → M).

The analyses of status transitions imply that the high-commitment

statuses, A and ECC, are more likely than the other statuses to serve

as endpoints of identity formation in adolescence. Stability of A and

ECC is very substantial, and recent studies have documented that both

statuses show more positive profiles of psychosocial adjustment compared to

diffusions or moratoriums. Achievers and adolescents in foreclosure or early

closure/closure tend to be characterized by relatively low levels of depression

(Meeus, 1996), anxiety (Berman, Weems & Stickle, 2006), substance use

(Luyckx, Goossens, Soenens & Vansteenkiste, 2005), aggression (Crocetti

et al., 2008), and relatively high levels of emotional stability and self-
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esteem (Luyckx et al., 2005). In contrast to achievement and early

closure/closure, searching moratorium and diffusion appear to be almost

exclusively transitional statuses, given that many adolescents move out of

these statuses and few (if any) move into them.

The transitional analyses suggested only a limited amount of change. Few

participants shifted from diffusion into achievement or from achievement to

diffusion (Table 8.3). Secondly, analyses of the identity trajectories revealed

that the majority of adolescents who change identity status across five

years make only one transition. This makes clear that changes in identity

status tend to be decisive, and that there is an extremely low probability of

additional identity status transitions.

The analyses of identity transitions and trajectories shed new light on

moratorium and reinforce the distinction between moratorium and searching

moratorium. First, our findings particularly underscore the transitional

nature of searching moratorium, as adolescents move primarily out of this

status. In fact, there were no searching moratoriums in the last waves

for the middle-to-late adolescent cohort. On the other hand, our analyses

showed moderate stability among adolescents in moratorium. This finding

suggests that a considerable number of moratoriums might be unable to

move out of this unstable identity configuration, and should be considered

as “characterological moratoriums,” as Côté and Schwartz (2002, p. 584)

have suggested. An important implication of Ct and Schwartz’s suggestion

is that, for characterological moratoriums, back-and-forth movement between

moratorium and achievement, as has been found to occur in adulthood for

some people (Stephen, Fraser & Marcia, 1992), is improbable as an identity

trajectory in adolescence. However, moratorium and searching moratorium

may nonetheless function as transitory statuses. When adolescents make

more than one identity transition, they tend to pass through moratorium

or searching moratorium. “Classical” moratorium, however, may also be

characterological, whereas searching moratorium appears to be exclusively

transitory. In addition, our findings show that searching moratorium offers
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a better starting point to reach achievement than does moratorium: 32%

versus 22% (4-year transition probabilities), respectively.

As noted earlier, our findings partially support the second assumption

of Waterman’s developmental hypothesis. Waterman (1982) hypothesized

that progressive identity development would occur through the transitions

D → EC, D → M, EC → M, and M → A. We found evidence for the

progressive transitions D → EC, D → M and M → A. The explanation

for the non-occurrence of the transition EC → M is that, as noted before,

the early closure status functions very often as the final identity status

observed in adolescence. Adolescents in this status do not think a lot about

their present commitments and are not active in searching for alternative

commitments. Therefore, they do not appear likely to give up their

commitments and consider adopting alternative life choices. With regard

to regressive transitions, we found support for one of the four regressive

identity status transitions that Waterman hypothesized: from achievement

to moratorium. Achievers are adolescents with the highest level of in-depth

exploration. They are very active in processing information about their

commitments. This orientation may give rise to loss of present commitments

and search for alternative commitments if one’s present commitments are

deemed unsatisfactory (Luyckx et al., 2006). We did not find support for

the three other regressive transitions that Waterman hypothesized: ECC

→ D, M → D, and A → D. Our findings clearly suggest that it is almost

impossible to go back to a state of disinterest in identity work (D) once

individuals have held strong commitments (ECC and A) or have been active

in considering alternative commitments (M). In sum, consistent with earlier

research (Berzonsky & Adams, 1999; Kroger, 2007; Van Hoof, 1999), we

found more progression than regression. At the same time, our findings also

make clear that regression in identity is something that cannot be ignored.
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8.4.3 Gender Differences

We found considerable gender differences in patterns of identity formation.

As expected, females were more likely to be achieved, and less likely to

be diffused, than males. In addition, we also found that females were

more likely to be classified into the early closure/closure status, and less

likely to appear in both moratoria, than males. These findings suggest

that, at least at present, females may be “further ahead” of males when

overall identity is measured as a combination of interpersonal and ideological

(especially educational) domains in adolescence and the early part of

emerging adulthood. The explanation might be that Dutch females combine

their classic stronger interpersonal commitments (Meeus & Deković, 1995)

with stronger educational commitments, given that girls at present often

outperform boys in school (Statistics Netherlands, 2008b, 2008c). Our

findings are consistent with results of recent studies in the United States

that have reported gender differences in interpersonal identity (Lewis, 2003),

ideological identity (Schwartz & Montgomery, 2002) and overall identity

(Guerra & Braungart-Rieker, 1999). We also found, however, that males

tend to “catch up” during adolescence. This is consistent with the review by

Kroger (1997), and suggests that earlier physical and cognitive maturation in

girls may account for some of this pattern. Recent studies have shown that

girls reach puberty between one and two years earlier than boys (Beunen et

al., 2000), and that, in early adolescence, girls tend to be up to a full year

ahead of boys in several aspects of brain development (Giedd, Blumenthal,

Jeffries, Castellanos & Zijdenbos, 1999; Colom & Lynn, 2004). Therefore,

girls might reach the mature identity statuses earlier than boys, whereas boys

catch up during adolescence.

8.4.4 Limitations and Suggestions for Further Research

A number of limitations of the present study warrant discussion. The first

limitation involves our sole reliance on self-report questionnaires. Although

questionnaires are the most appropriate instruments by which to gather
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information on subjective processes, such as identity development, the biases

involved in self-reports may have come into play. Future research could try to

overcome these biases by focusing on the micro processes underlying identity

development. This could be done by tapping identity on a day-to-day basis.

A second limitation of our study is its descriptive nature. We did not test

explanations of identity progression during adolescence - for example, why

certain identity transitions have a higher probability than others. Given that

identity status transitions in adolescence seem to be quite decisive, future

research should try to specify the conditions that predict the timing of these

transitions. Longitudinal designs that include a focus on the link between

identity transitions and life transitions, that is transitions in the educational

and occupational career and in the formation of intimate relationships, may

be a fruitful option here.

Although our model is conceptually distinct from Marcia’s model in two

respects, the findings of our study are remarkably similar to those of studies

using Marcia’s paradigm. Notably we found similar percentages of change

and stability of identity statuses, moratorium to be among the least stable

statuses over time, and that the high-commitment statuses are associated

with the most positive adjustment profile. Notably different is the very

high prevalence of early closure/closure in our study as compared to that

of foreclosure in the earlier studies using Marcia’s paradigm. Obviously, this

finding requires replication and expansion, for instance by including more

domains in an overall identity measure, such as dating relationships, work,

religion, and politics. It is also important for future research to examine

whether the high prevalence of early closure/closure in our study is due to

our use of reconsideration instead of Marcia’s original measure of exploration

in breadth. Adding a measure of exploration in breadth to the U-MICS could

clarify this.

Despite these limitations, the present study has contributed significantly

to our understanding of the process of identity formation over time. It is

the first five-wave study of a broad-range sample of early-to-middle and
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middle-to-late adolescents to show how identity develops between the ages

12 to 20 and to elucidate which identity transitions are most likely to

characterize these changes. The makeup of our sample suggests that our

findings may be generalizable to individuals who are in various types of

education during adolescence. Findings of our study may be less generalizable

to adolescents who enter the labor force very early and to adolescents from

ethnic minority groups. We also clearly demonstrated that statuses with a

very clear resemblance to those from Marcia’s model emerged in all waves in

both early-to-middle and middle-to-late adolescence. It is hoped that these

findings inspire more longitudinal research on identity development.
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Summary (in Dutch)

De rode draad in deze dissertatie is de informatieve hypothese. Onderzoekers

hebben bepaalde verwachtingen over hoe de werkelijkheid er uit ziet. Het

doel van veel onderzoekers is het evalueren van een aantal van deze

verwachtingen om te bepalen welke de beste is. Deze verwachtingen kunnen

zijn geformuleerd in termen van wat ik een informatieve hypothese zal

noemen. Dit is een statistische hypothese waarbij ongelijkheidsrestricties

zijn gespecificeerd tussen parameters, bijvoorbeeld de ordening tussen drie

groepsgemiddelden: µ1 < µ2 < µ3, waarbij het teken ’<’ aangeeft dat het

eerste gemiddelde (aangegeven met µ1) lager is dan het tweede gemiddelde

(µ2) dat weer lager is dan het derde gemiddelde (µ3).

Hoofdstuk 1 van het proefschrift biedt een introductie voor de andere

hoofdstukken met een uitgebreide inleiding over wat informatieve hypothesen

precies zijn. Ook laat ik zien waarom informatieve hypothesen niet

geëvalueerd kunnen worden met klassieke nul hypothese toetsing, een

methode die vrijwel alle onderzoekers gebruiken. De resterende proefschrift

hoofdstukken zijn vervolgens in drie delen opgesplitst.

Deel 1 biedt een filosofische benadering van informatieve hypothesen,

waarbij hoofdstukken 2 en 3 beschrijven waarom het evalueren van infor-

matieve hypothesen beter is dan klassieke nul hypothese toetsing (Hoofdstuk

2) of klassieke model selectie (Hoofdstuk 3). Let op: wanneer ik de
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terminolgie klassieke nul hypothese toetsing gebruik, dan verwijs ik naar

de veel gebruikte klassieke toetsing met behulp van p-waardes waar de nul

hypothese µ1 = µ2 = µ3 wordt getoetst. En wanneer ik de terminolgie

klassieke model selectie gebruik, dan verwijs ik naar de veel gebruikte model

selectie maten Akaike’s informatie criterium, de AIC, (Akaike, 1973, 1981)),

de Bayesian informatie criterium, de BIC, (Schwarz, 1978), of de Deviance

informatie criterium, de DIC, (Spiegelhalter et al., 2002).

Deel 2 biedt een statistische benadering van informatieve hypothesen.

Eerst laat ik zien hoe informatieve hypothesen geevalueerd kunnen worden

met behulp van Bayesiaanse model selectie (Hoofdstuk 4). Dit is een methode

die al in diverse statistische papers wordt beschreven (zie bijvoorbeeld

Hoijtink, Klugkist & Boelen, 2008; Mulder, Klugkist et al., 2009) en al

in enkele toegepaste papers wordt gebruikt (zie bijvoorbeeld Meeus, Van

de Schoot, Keijsers et al., 2010; Van Well et al., 2009). Hoofdstuk 5

introduceert een nieuwe methode om een informatieve hypothese te toetsten

met behulp van een parametrische bootsrap methode. Deze methode biedt

de mogelijkheid om informatieve hypothesen te evalueren in (complexe)

structurele modellen (ook wel SEM modellen genoemd), iets wat nog niet

eerder mogelijk was. Ten slotte wordt in Hoofdstuk 6 een nieuwe model

selectie maat afgeleid, de Prior informatie criterium (PIC). Dit is een

Bayesiaanse model selectie maat die een sterke link heeft met de Deviance

informatie criterium (DIC) van Spiegelhalter et al. (2002).

In Deel 3 worden twee toepassingen gepresenteerd waar een inhoudelijke

vraag met behulp van informatieve hypothesen wordt onderzocht. In

Hoofdstuk 7 wordt onderzocht hoe delinquent gedrag en zelfbeeld van

adolescenten met elkaar samenhangen en of er twee subgroepen bestaan

van adolescenten die delinquent gedrag vertonen: een subgroep die tevens

een hoog zelfbeeld heeft en een subgroep die juist een laag zelfbeeld heeft.

Hoofdstuk 8 gaat over de ontwikkeling van identiteit van adolescenten over

de tijd heen en de verwachting daarbij dat over de tijd heen bepaalde



205

identiteitstypes minder vaak voor gaan komen terwijl andere types toenemen

in prevalentie.

Omdat het concept van informatieve hypothesen relatief nieuw is, geef

ik hierna een inleiding voor niet statistici over wat deze informatieve

hypothesen precies zijn, waarom deze hypothesen beter gebruikt kunnen

worden dan klassieke nul hypothese en hoe dit gedaan kan worden met behulp

van Bayesiaanse model selectie. Deze inleiding is eerder gepubliceerd het

tijdschrift ‘De Psyholoog’ (Van de Schoot et al., 2009).
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Rechtstreeks Verwachtingen Evalueren of de

Nul Hypothese Toetsen?

Van de Schoot, R., Hoijtink, H., & S. Doosje

Published, 2009, in De Psycholoog, 4, 196-203

9.1 Introductie

Een praktiserend NIP-psycholoog houdt zijn of haar wetenschappelijke

literatuur bij en blijft op de hoogte van recente ontwikkelingen op zijn of

haar vakgebied. In dit artikel willen we praktiserend psychologen op de

hoogte houden van een minder voor de hand liggende ontwikkeling, namelijk

op het gebied van statistiek. In de wetenschappelijke literatuur die een

praktiserende psychologen vaak leest, wordt door vrijwel alle onderzoekers

klassieke nul hypothese toetsing (NHT) gebruikt om antwoord te geven op

de onderzoeksvraag. In dit artikel zullen we laten zien waarom NHT niet per

se de beste keuze hoeft te zijn om de onderzoeksvraag te beantwoorden. Zie

ook het stuk van Eric-Jan Wagenmakers in De Psycholoog van juli/augustus
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2008. We laten zien wat de consequenties zijn als het mis gaat met NHT en

introduceren vervolgens een recent ontwikkelde methode die een veelbelovend

alternatief biedt voor NHT, namelijk Bayesiaanse Model Selectie (BMS)

(Hoijtink & Boom, 2008; Klugkist et al., 2005). Aan de hand van een

voorbeeld leggen we kort uit hoe BMS werkt en welke voordelen deze

methode biedt ten opzichte van NHT. Om te laten zien hoe NHT ’faalt’

en BMS beter werkt, presenteren we een relevant voorbeeld uit de arbeids-

en gezondheidspsychologie. Op deze manier wordt duidelijk hoe BMS in de

(wetenschappelijke) praktijk gebruikt kan worden.

9.2 Informatieve Hypothesen

Onderzoekers hebben bepaalde verwachtingen over hoe de werkelijkheid

er uit ziet. Verwachtingen en hypothesen kunnen gebaseerd zijn op

eerder (literatuur-) onderzoek, wetenschappelijk debat of zelfs (subjectieve)

menings- verschillen. Het laatste kan bijvoorbeeld als de ene onderzoeker

overtuigd is van het effect van een nieuwe interventie of nieuwe behandelmeth-

ode die nog niet eerder is onderzocht en een andere onderzoeker niet. Het is

natuurlijk wel van belang dat alleen nuttige verwachtingen met elkaar worden

vergeleken en niet alle mogelijke verwachtingen. Wij houden juist een pleidooi

voor het rechtstreeks evalueren van de voorkennis die een onderzoeker heeft.

Het doel van veel onderzoekers is het evalueren van een aantal van deze

verwachtingen om te bepalen welke de beste is. Met andere woorden welke

verwachting de meeste steun krijgt van de verzamelde data. Verwachtingen

zijn geformuleerd in termen van wat wij informatieve hypothesen zullen

noemen. Dit omdat er a priori, dat is voordat er data zijn verzameld,

informatie bestaat. Bijvoorbeeld over de ordening tussen twee (of meer)

groepsgemiddelden: µ1 < µ2, waarbij het teken ’<’ aangeeft dat het eerste

gemiddelde (µ1) lager is dan het tweede gemiddelde (µ2). Wij zullen laten

zien dat onderzoekers deze verwachtingen wel willen evalueren, maar dit

niet zo maar kunnen doen. Het is namelijk vrijwel onmogelijk om met
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Figuur 9.1: Het interactie model van Karasek

NHT complexe informatieve hypothesen te evalueren. Als onderzoekers dit

toch proberen omdat er geen alternatieven voor handen zijn, dan ontstaan

er enkele problemen die we nader zullen toelichten aan de hand van een

voorbeeld.

9.3 Voorbeeld: Werkdruk,

Sturingsmogelijkheden en Verkoudheid

In deze sectie presenteren we een voorbeeld dat we eerst met behulp van

NHT evalueren en daarna met BMS. Karasek (1979) stelde dat de gezondheid

van werknemers wordt bepaald door combinaties van de mate van werkdruk

(’job demands’) en de beschikbare sturingsmogelijkheden (’job control’).

Daarnaast zijn er twee onderliggende mechanismen die van invloed zijn op

de werkdruk en sturingsmogelijkheden, namelijk leren en stress, zie Figuur

9.1.

Karasek voorspelde dat met name een combinatie van hoge werkdruk

en weinig sturingsmogelijkheden (een ’hoge stress’ werksituatie) het risico
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op gezondheidsklachten zou vergroten ten opzichte van een ’lage stress’

werksituatie’ (lage werkdruk, veel sturingsmogelijkheden) en ten opzichte van

een ’actieve’ (hoge werkdruk, veel sturingsmogelijkheden) en een ’passieve’

(lage werkdruk, weinig sturingsmogelijkheden) werksituatie. In Figuur 9.1

zijn de vier werksituaties weergegeven: hoge stress, lage stress, passief, en

actief.

Het interactiemodel van Karasek veronderstelt dat de hoge werkdruk

een toestand van fysiologische opwinding teweegbrengt, bijvoorbeeld door

een verhoogde hartslag en adrenalineproductie, die door de gebrekkige stur-

ingsmogelijkheden niet kan worden omgezet in een effectieve copingrespons

(Buunk, de Jonge, Ybema & Wolff, 1998). Omdat er aanwijzingen zijn dat

het interactiemodel een goede verklaring biedt van cardiovasculaire klachten

(Schnall, Landsbergis & Baker, 1994), zouden we kunnen veronderstellen

dat dit ook geldt voor andere ziektebeelden, zoals het risico om verkouden te

worden. Karasek’s interactiemodel is hiervoor echter niet geheel ondersteund

omdat alleen een hoofdeffect van werkdruk (Hao, Duan & Zhang, 2002;

Mohren, Swaen, Borm, Bast & Galama, 2001) of van sturingsmogelijkheden

(Doosje, Goede, Doornen, Goldstein & Van de Schoot, 2010) werd gevonden.

De empirische steun voor de interacties die Karasek veronderstelt is daarom

beperkt.

In het voorbeeld voor dit artikel gebruiken we de dataset beschreven in

het artikel van (Doosje et al., 2010). De onderzoeksvraag is hoe de vier

typen werksituaties die Karasek beschrijft, zie Figuur 9.1, verschillen met

betrekking tot het aantal keren verkouden zijn geweest in het afgelopen

halfjaar. Daarover hebben we drie verwachtingen opgesteld naar aanleiding

van eerder onderzoek.

Verwachting A:

Vanuit de oorspronkelijke theorie van Karasek (1979) zouden we verwachten

dat de groep hoge stress (µ1) het ongezondst is ten opzichte van de groepen

lage stress (µ2), passief (µ3) en actief (µ4). De groep hoge stress heeft dan
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een hoger gemiddelde op het aantal keren verkouden zijn in het afgelopen

halfjaar dan de overige drie groepen. De informatieve hypothese ziet er dan

zo uit, waarbij ’>’ verwijst naar een hoger gemiddelde en dus vaker verkouden

zijn en ’=’ naar een gelijk gemiddelde:

HA : µ1 > {µ2 = µ3 = µ4}

Verwachting B:

Als werkdruk de meest relevante variabele is, zoals Mohren et al. (2001) en

Hao et al. (2002) hebben gevonden, dan is een hoge werkdruk gerelateerd

aan het ongezondst zijn en dus vaker verkouden zijn. De groepen actief (µ4)

en hoge stress(µ1) zouden dan een hoger gemiddelde hebben dan de andere

twee groepen:

HB : {µ1 = µ4} > {µ2 = µ3}

Verwachting C:

Zoals is gesuggereerd door Doosje et al. (2010) spelen zowel werkdruk als

sturingsmogelijkheden een rol bij verkouden worden. In dat geval zou

de groep hoge stress (µ1) een hoger gemiddelde hebben op de variabele

verkouden zijn gevolgd door de groep passief (µ3), gevolgd door de groep

actief (µ4). De groep lage stress (µ2) zou dan het minst vaak verkouden

zijn omdat zij weinig stress en veel sturingsmogelijkheden hebben. De

bijbehorende hypothese ziet er dan zo uit:

HC : µ1 > µ3 > µ4 > µ2

Om erachter te komen welke van deze drie verwachtingen het meest

waarschijnlijk is, is in het artikel van Doosje et al. (2010) een variantie

analyse (ANOVA) uitgevoerd. In Tabel 9.1 zijn de groepsgemiddelden

weergegeven. Er bleken significante verschillen te bestaan tussen de vier

groepen (F (3) = 9.51, p < .001) en post-hoc analyse met Bonferroni correctie

laat zien dat sommige maar niet alle groepen onderling van elkaar verschillen,
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zie Tabel 9.1. Als twee gemiddeldes dezelfde letter hebben, dan is het verschil

significant. Zo hebben µ1 en µ2 beide de letter A en verschillen significant

van elkaar (p < .05).

Voor de ANOVA is de volgende nul hypothese getoetst: H0 : µ1 =

µ2 = µ3 = µ4. Er werden significante groepsverschillen gevonden en de

nul hypothese is verworpen. Merk op dat dit tot nu toe nog steeds geen

informatie geeft over welke van de informatieve hypothese (HA, HB, HC) de

beste is. Om hierover toch een uitspraak te doen kan gekeken worden naar

de ordening van de gemiddelden uit Tabel 9.1:

µ3 > µ1 > µ4 > µ2 .

Er zijn ook post-hoc toetsen uitgevoerd en als we bij niet significant resultaat

de ordening van de gemiddeldes aanpassen, dan wordt de ordening:

{µ3 = µ1} > {µ4 = µ2} .

Het is nu op basis van dit resultaat erg lastig om te kiezen tussen de drie

informatieve hypothesen HA, HB, en HC . Geen van de hypothesen worden

namelijk volledig ondersteund door de gevonden ordening van de data. De

resultaten geven slechts in meer of mindere mate steun voor elk van de

informatieve hypothesen. Voor HA geldt dat µ1 groter is dan µ2 en µ4, maar

niet groter is dan µ3. Alleen de gemiddeldes µ1 en µ4 voor HB zijn groter

dan µ2, maar dit geldt niet voor µ3. Beide hypothesen worden dus niet

echt ondersteund door de data. Hypothese C komt echter dicht in de buurt,

zeker als gekeken wordt naar de ordening op basis van de groepsgemiddelden.

Als echter naar de significante resultaten wordt gekeken, dan klopt ook deze

hypothese niet meer.

Hypothese C lijkt dus op het eerste gezicht de meeste steun te krijgen,

maar de vraag is of dit ook werkelijk zo is. Het is nog lastiger, of zelfs

onmogelijk om te zeggen hoeveel waarschijnlijker de ene hypothese is ten

opzichte van een andere. Met andere woorden, nul hypothese toetsing geeft

in dit voorbeeld geen bevredigend antwoord op de onderzoeksvraag, in de

volgende sectie gaan we nader in op wat er precies mis gaat.
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Tabel 9.1: Groepsgemiddelden en standaarddeviaties (SD) voor de vier groepen van het

Karasek model

Hoge stress Lage stress Passief Actief

(µ1) (µ2) (µ3) (µ4)

Gemiddelde 2.37ab 2.17ac 2.42cd 2.18bd

SD 1.03 0.93 0.98 0.97

n 289 594 517 638

noot: Gemiddelden met dezelfde letter verschillen significant van elkaar (p < .05)

9.4 Wat Gaat er Mis?

Er is door de tijd heen veel literatuur verschenen met kritiek op het gebruik

van NHT en het gebruik van p-waarden (Cohen, 1990, 1992, 1994; Balluerka

et al., 2005; Krantz, 1999; Rozenboom, 1960; Sterne & Smith, 2001;

M. D. Lee & Wagenmakers, 2005). Wij zullen ons voornamelijk richten op

waar het mis gaat bij het evalueren van informatieve hypothesen met behulp

van NHT.

Bij NHT is de hypothese die daadwerkelijk getoetst wordt de bekende

nul hypothese er is niks aan de hand versus het alternatief er gebeurt iets,

maar we weten niet wat. In het eerste voorbeeld van de vorige sectie was de

onderzoeksvraag welke informatieve hypothese het meest waarschijnlijk was

HA, HB of HC :

HA : µ1 > {µ2 = µ3 = µ4} ,

HB : {µ1 = µ4} > {µ2 = µ3} ,

HC : µ1 > µ3 > µ4 > µ2 .

De hypothesen die daadwerkelijk getoetst worden met NHT zijn echter:

H0 : µ1 = µ2 = µ3 = µ4 ,

H1 : niet H0 .

Merk op dat deze nul (H0) en alternatieve hypothese (H1) niet hetzelfde zijn

als de informatieve hypothesen HA, HB en HC die de onderzoekers eigenlijk
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wilden evalueren. Als de nul hypothese en de alternatieve hypothese geen

onderdeel zijn van de onderzoeksvraag, dan is er geen directe relatie tussen

de hypothesen waar een onderzoeker in gëınteresseerd is en de hypothesen

die daadwerkelijk getoetst worden met NHT. De resultaten van NHT geven

in dat geval geen antwoord op de onderzoeksvraag.

Daar komt bij dat onderzoekers vaak helemaal niet gëınteresseerd zijn in

de nul hypothese. Onderzoekers hebben namelijk vrijwel altijd verwachtingen

over hoe de relatie tussen variabelen eruit zou moeten zien. Het is dan raar

dat een nul hypothese ‘er is niks aan de hand’ wordt getoetst aangezien de

onderzoeker van te voren al weet dat er ‘iets’ aan de hand is. Het is dan veel

logischer om de informatieve hypothesen rechtstreeks te evalueren in plaats

van de nul hypothese te toetsen.

Als dan toch een nul hypothese wordt getoetst, dan wordt de traditionele

p-waarde gebruikt om deze nul hypothese te verwerpen of niet te verwerpen.

Het omslagpunt van deze dichotome beslissing ligt bij de welbekende waarde

van p < .05. Deze drempelwaarde van .05 is niet alleen willekeurig gekozen

(zie bv: Cohen, 1994; Rozenboom, 1960), maar laat alleen ruimte voor de

conclusie dat een nul hypothese wel of niet wordt verworpen met niks daar

tussenin. Dit kan leiden tot vreemde beslissingen, bijvoorbeeld in het geval

dat een p-waarde p = .051 of p = .049 is. In het eerste geval wordt de nul

hypothese niet verworpen en in het tweede geval wel. Het mag duidelijk zijn

dat beide situaties niet veel van elkaar verschillen. Het is dan vreemd dat de

conclusie voor beide situaties totaal anders is.

Wanneer de nul hypothese wordt verworpen, dan weten we eigenlijk

nog steeds niks over de informatieve hypothesen aangezien de alternatieve

hypothese geen informatie bevat over de ordening tussen de gemiddelden.

Ook een visuele inspectie van bijvoorbeeld de groepsgemiddelden is niet

altijd voldoende en is in ieder geval subjectief. Hoe kan een onderzoeker dan

toch uitspraken doen over de informatieve hypothesen? Het resultaat zou

geen dichotome ja/nee beslissing moeten zijn, maar een kans per hypothese
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dat deze de beste is. In de volgende sectie presenteren we een methode,

Bayesiaanse model selectie, die hiertoe wel in staat is.

9.5 Bayesiaanse Model Selectie

Omdat veel artikelen over BMS lastig te lezen zijn voor een niet-statisticus,

geven wij een zeer korte en vereenvoudigde introductie. Hiervoor gebruiken

we een tweede voorbeeld dat is gebaseerd op Doosje et al. (2010) met

slechts twee groepen en 1 variabele, zodat we ook grafisch kunnen weergeven

wat er gebeurt. Voor een uitgebreidere introductie en voor een overzicht

van publicaties zie Hoijtink, Klugkist and Boelen (2008) en voor een meer

technische introductie Klugkist et al. (2005).

Stel dat we de groep lage stress (µ1) willen vergelijken met de groep

hoge stress (µ2) op het aantal keren verkouden zijn geweest in het afgelopen

halfjaar. En stel dat we de volgende drie hypothesen hebben: (H1) er is geen

verwachting over de twee groepen; (H2) beide groepen hebben dezelfde score;

en (H3) de groep lage stress is minder vaker verkouden dan groep de groep

hoge stress. De hypothesen zien er dan zo uit:

H1 : µ1 , µ2 ,

H2 : µ1 = µ2 ,

H3 : µ1 < µ2 .



216 HOOFDSTUK 9. REMAINING ISSUES

µ1

H2

0 7

7

0 7

7

0 7

7
G
ro
e
p
 2

Groep 1 Groep 1Groep 1

G
ro
e
p
 2

G
ro
e
p
 2

H1 H3

Figuur 9.2: Voorkennis vertaald in Informatieve Hypothesen

Om erachter te komen welke van de drie hierboven beschreven hypothesen

het meest waarschijnlijk is, gaan we deze evalueren met zogenaamde posterior

model kansen (PMK). Om deze PMK’s uit te rekenen zijn drie ingrediënten

nodig, namelijk (1) de voorkennis die een onderzoeker heeft, (2) de likelihood

(waarschijnlijkheid) van de data en (3) de steun in de data voor elk van de

hypothesen.

Het eerste ingrediënt is de kennis die er is over de ordening van de

gemiddelde scores van de groepen lage stress (µ1) en hoge stress (µ2),

voordat de data zijn gezien. Dit zijn de opgestelde hypothesen welke in

Figuur 9.2 grafisch zijn weergegeven. Het vierkant vertegenwoordigt alle

mogelijke combinaties van gemiddelden die beide groepen kunnen hebben op

de variabele verkouden zijn.

Voor elke hypothese bepalen we nu wat de toegestane ruimte is binnen

dit vierkant. Met andere woorden, we bepalen welke combinaties van

gemiddelden toegestaan zijn voor elk van de opgestelde hypothesen. Voor

Hypothese 1 is de gehele ruimte mogelijk, alle combinaties van gemiddelde

scores op verkouden zijn toegestaan. Voor Hypothese 2 is een groot deel

van het vierkant niet toegestaan, er zijn namelijk alleen combinaties van

gemiddelden mogelijk waar beide groepen aan elkaar gelijk zijn, dit is de

diagonaal van Figuur 9.2. Voor Hypothese 3 is het gedeelte van het vierkant

toegestaan waar de groep hoge stress hoger scoort op het risico om verkouden
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te zijn dan de groep lage stress. Dit is de witte driehoek in Figuur 9.2. Binnen

deze ruimte is elke combinatie van gemiddelden even waarschijnlijk. Dit

wordt ook wel een uniforme prior verdeling genoemd die over de toegestane

ruimte is gelegd, zie voor meer informatie hierover Klugkist et al. (2005).

Het tweede ingrediënt is de informatie die er aanwezig is in de data over de

waarschijnlijkheid van mogelijke combinaties in de populatie. Dit wordt ook

wel likelihood van de data genoemd en kan gezien worden als een landschap

met daarin een piek op de plek waar de meest waarschijnlijke combinatie van

de gemiddelden zich bevindt, zie Figuur 9.3. Als we een uitspraak willen

doen over het gemiddelde van de groepen hoge stress en lage stress in de

populatie, dan zijn de gemiddelden die in de data zijn geobserveerd, het meest

waarschijnlijk. Stel dat bijvoorbeeld µ1 = 3.6 en µ2 = 4.1 de gemiddeldes zijn

die in de data set zijn geobserveerd, dan is de kans dat in de populatie groep

1 een gemiddelde heeft van 4.6 en groep 2 een gemiddelde van 3.1, maximaal

is. Merk op dat dit fictieve waardes zijn gebaseerd op een hypothetische

data set. De maximale waarschijnlijkheid, maximum likelihood genoemd, is

de piek van de curve in Figuur 9.3. Combinaties van gemiddelden die verder

afliggen van deze piek zullen steeds minder waarschijnlijk zijn in de populatie

en leiden tot een steeds lagere curve in Figuur 9.3. De kans dat bijvoorbeeld

in de populatie de groepsgemiddelden een waarde hebben van µ1 = 6.2 en

µ2 = 1.8 is veel kleiner, wat te zien is aan de lagere curve op dit punt in de

grafiek.

Het derde ingrediënt is de berekening van de hoeveelheid steun die er is

in de data voor elk van de hypothesen. Dit wordt gedaan door de gemiddelde

hoogte van de likelihood uit te rekenen binnen de toegestane parameter

ruimte. Om dit grafisch weer te geven leggen we Figuur 9.2 op Figuur

9.3 wat resulteert in Figuur 9.4. In deze laatste figuur is te zien hoeveel

er van de likelihood in de toegestane ruimte van het vierkant ligt. Voor

elk van de drie hypothesen kan vervolgens uitgerekend worden hoe groot

de gemiddelde hoogte van de likelihood is in deze toegestane ruimte. Een

groot deel van het lagere gebied van de likelihood valt bijvoorbeeld buiten de
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Figuur 9.3: Likelihood van de data
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Figuur 9.4: De voorkennis en data met elkaar gecombineerd

toegestane ruimte die bij Hypothese 3 hoort. Dit lagere gebied wordt echter

wel meegenomen in de berekening van Hypothese 1 omdat hier het gehele

oppervlak van het vierkant toegestaan is. Hierdoor zal de gemiddelde hoogte

van de likelihood voor Hypothese 3 een stuk hoger zijn dan voor Hypothese

1. De gemiddelde hoogte voor Hypothese 2 zal juist heel erg klein zijn ten

opzichte van Hypothese 1 en 3, omdat een groot gedeelte van de likelihood

inclusief de piek van de curve niet in het toegestane gebied van Hypothese 2

ligt.



9.5. BAYESIAANSE MODEL SELECTIE 219

Tabel 9.2: Resultaten BMS voor Voorbeeld 2

Hypothese PMK

H1 .31

H2 .08

H3 .61

De drie ingrediënten die we hiervoor besproken hebben, worden omgezet

in posterior model kansen (PMK’s). Wanneer de gemiddelde hoogte van

de likelihood groter is, dan is er dan meer steun van de data voor de

hypothese wat vervolgens resulteert in een hogere PMK. Een PMK houdt

niet alleen rekening met hoe goed de hypothese bij de data past, maar ook

hoe complex de hypothese is. Dit resulteert in één enkel getal per hypothese

op een kansschaal en kan gëınterpreteerd worden als de waarschijnlijkheid per

hypothese dat deze de beste is van alle hypothesen die onderzocht worden.

Een gebruiker van BMS hoeft alleen de hypothesen te specificeren in termen

van restricties tussen de statistische parameters, zoals µ1 < µ2, en de dataset

aan te leveren, de bijbehorende software levert de uitkomsten van de analyses

(zie http : //www.fss.uu.nl/ms/informativehypothesis).

De berekening van de PMK’s geschiedt aan de hand van Bayes Fac-

tors, uitgevonden door Thomas Bayes in 1764 (Bayes, 1764) en is verder

ontwikkeld in 1774 door Laplace (zie: Laplace’s 1774 Memoir on Inverse

Probability in: Stigler, 1986). Het was pas in de 20ste eeuw dat de

Bayesiaanse benadering opnieuw ontdekt werd door o.a. Ramsey, de Finetti,

Jeffreys, en Jaynes (voor een overzicht zie: Corfield & Williamson, 2001). Pas

op het eind van de vorige werden computers snel genoeg om de berekeningen

ook daadwerkelijk uit te voeren (zie b.v.: Bayarri & Berger, 2000; Kass &

Raftery, 1995; Raftery, 1995). Het omzetten van de drie ingrediënten in

Bayes Factors en daarna in PMK’s is uitgebreid beschreven in het boek van

Hoijtink, Klugkist and Boelen (2008).

De resultaten van voorbeeld 2 (zie Tabel 9.2) laten zien dat Hypothese

3 de meeste ondersteuning krijgt door de informatie die in de data set zit
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en dus de beste hypothese is vergeleken met de andere twee hypothesen. De

conclusie is dan dat de verwachting de hoge stress groep hoger scoort dan de

de lage stress groep op verkouden zijn het beste is met een waarschijnlijkheid

van .61. De kans dat deze conclusie niet correct is, is 1 - .61 = .39. Het is

nu aan de onderzoeker om te beslissen of een waarschijnlijkheid van .61 en

een foutmarge van .31 een interessante conclusie oplevert.

Het lijkt misschien dat er een grote fout marge is, merk echter wel op dat

Hypothese 3 ongeveer 8 keer zo waarschijnlijk is als Hypothese 2. Dit kan op

zichzelf al een bevredigend resultaat zijn. Dat Hypothese 3 ’slechts’ 2 keer

zo waarschijnlijk is als een model zonder enige beperkingen (Hypothese 1),

is niet eens zo slecht. Dit omdat het enige verschil tussen beide hypothesen

slechts 1 restrictie is. De conclusie dat Hypothese 3 de beste hypothese is

in deze model selectie competitie is dus geoorloofd. Het zou overigens best

kunnen zijn dat bepaalde resultaten van BMS een ongeveer even grote PMK

opleveren, bijvoorbeeld bij een PMK’s van .49 en .50. In dit geval moet de

onderzoeker terug naar de tekentafel en moet er gezocht worden naar een

betere verwachting die wellicht meer ondersteuning krijgt van de data. Deze

nieuwe hypothese kan dan worden toegevoegd aan de reeds bestaande set van

hypothesen. Dit geldt natuurlijk ook als een andere onderzoeker een andere

hypothese er op na houdt en zijn of haar eigen verwachting wil toevoegen.

Wat hebben we nu gedaan? We hebben de voorkennis voordat we data

hebben verzameld, vertaald in een set van hypothesen. We hebben daarna

uitgerekend hoe waarschijnlijk deze hypothesen zijn nadat we de data hebben

gezien. Hierdoor is duidelijk gemaakt welke verwachting het beste wordt

ondersteund door de data en ook hoeveel onzekerheid hierover bestaat. In

de volgende sectie passen we deze methode toe op het uitgebreidere Karasek

voorbeeld.
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Tabel 9.3: Resultaten van BMS voor Voorbeeld 1

Hypothese PMK

HA .11

HB .01

HC .88

9.6 Voorbeeld Opnieuw Geanalyseerd

De verwachtingen van voorbeeld 1 zijn met behulp van BMS geanalyseerd.

Ter herinnering: Verwachting A stelt dat de groep hoge stress het vaakst

verkouden is ten opzichte van de groepen lage stress, passief en actief ;

Verwachting B stelt dat de groepen actief en hoge stress het vaakst

verkouden zijn dan de andere twee groepen; Verwachting C stelt dat de

groep hoge stress het vaakst verkouden is gevolgd door respectievelijk de

groep passief, actief en lage stress.

In Tabel 9.3 is voor elk van de drie verwachtingen aangegeven hoe

waarschijnlijk deze is. Hypothese C heeft de hoogste waarschijnlijkheid en

heeft een kans van .88 dat dit de beste hypothese is en een kans van .12 dat

dit niet zo is.

Geconcludeerd kan worden dat de groep hoge stress (µ1) het vaakst

verkouden is. Mensen die gekarakteriseerd worden door veel stress op

het werk en maar weinig sturingsmogelijkheden hebben, lopen dus het

grootste risico op verkoudheid. Deze groep wordt gevolgd door mensen die

een lage werkdruk ervaren maar tevens ook weinig sturingsmogelijkheden

hebben. Heb je echter veel sturingsmogelijkheden dan heb je minder kans

om verkouden te zijn, en heb je ook nog eens weinig stress op het werk, dan

ben je relatief het gezondst en ben je het minst vaak verkouden.
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9.7 Conclusie

Met klassieke nul hypothese toetsting moet een hele stapel output geëvalueerd

worden om een onderzoeksvraag te beantwoorden: F-toets, post-hoc toetsen,

groepsgemiddelden, etc. Deze stapel output kan makkelijk leiden tot

verwarrende resultaten. Daarnaast geven de resultaten van NHT geen direct

antwoord op de onderzoeksvraag en kunnen informatieve hypothesen niet

direct met elkaar vergeleken worden, iets dat met BMS wel kan. Ook

wanneer het niet voor de hand ligt welke hypothese de meeste steun krijgt

van de data, bijvoorbeeld wanneer de ordening van de groepsgemiddelden niet

geheel overeen komt met elk van de hypothesen, geeft BMS nog steeds een

interpreteerbaar resultaat. Zelfs bij veel complexere onderzoeksvragen dan in

dit artikel besproken, bijvoorbeeld met meerdere (on)afhankelijke variabelen,

meerdere meetmomenten over de tijd heen, covariaten, meer groepen, enz.,

geeft BMS nog steeds een enkel getal per hypothese.

Bayesiaanse model selectie (BMS) resulteert in makkelijk te interpreteren

resultaten en geeft een precies antwoord op de onderzoeksvraag. Dat is

namelijk per verwachting/hypothese de kans dat deze hypothese de beste

hypothese is en dus de meeste steun krijgt van de data. BMS is daardoor

een veelbelovend alternatief voor NHT en zal steeds vaker opduiken in de

wetenschappelijk literatuur.
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