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Evaluating model fit in Bayesian confirmatory factor analysis with large 

samples: Simulation study introducing the BRMSEA 

Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based 

on, for example, Maximum Likelihood estimation for the assessment of reliability and 

validity of educational and psychological measures. For increasing sample sizes, however, 

the applicability of current fit statistics evaluating model fit within Bayesian CFA is limited. 

We propose, therefore, a Bayesian variant of the root mean square error of approximation 

(RMSEA), the BRMSEA. A simulation study was performed with variations in model 

misspecification, factor loading magnitude, number of indicators, number of factors, and 

sample size. This showed that the 90% posterior probability interval of the BRMSEA is valid 

for evaluating model fit in large samples (N ≥ 1,000), using cut-off values for the lower (< 

.05) and upper limit (< .08) as guideline. An empirical illustration further shows the 

advantage of the BRMSEA in large sample Bayesian CFA models. In conclusion it can be 

stated that the BRMSEA is well suited to evaluate model fit in large sample Bayesian CFA 

models by taking sample size and model complexity into account. 

Keywords: Bayesian procedures, Factor analysis, Model fit, Validity, Simulation 

Introduction 

Educational and psychological measures often include multiple indicators consisting of items from 

a questionnaire, a set of observations, or results from an interactive application. These indicators 

are believed to represent (multiple) latent factor(s) which are not directly observable. The 

Classroom Assessment Scoring System Toddler (CLASS; Pianta, Hamre, & La Paro, 2011), for 

example, combines observations on different domains to provide an indication of the educational 

and emotional quality in the classroom. Confirmatory factor analysis (CFA) plays an important 

role in the assessment of the reliability and validity of such measures (DiStefano & Hess, 2005). 

With CFA the underlying theoretical framework of an instrument can be assessed providing a 

transparent and theoretical description of its (psychometric) properties (e.g., Kline, 2011). As such 
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CFA gives insight in, for example, the relation between indicators and the latent factor(s), the 

(hierarchical) factor structure, and potential interdependencies between indicators of educational 

and psychological measures. Besides these aspects, CFA can also assess the validity of an 

instrument across groups and over time. This aspect, known as measurement 

equivalence/invariance (ME/I), indicates if an instrument measures the same (latent) construct 

across different populations or settings (Millsap, 2011; Van de Schoot, De Beuckelaer, Lek, & 

Zondervan-Zwijnenburg, 2015). As such CFA plays an important role within the development, 

validation, and application of most measurement instruments. 

While CFA is classically performed within a frequentist framework, recent decades have 

seen a strong increase in the use of the Bayesian framework to estimate CFA (Van de Schoot, 

Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli, 2016). Within large samples with normally 

distributed data which is not impacted by a high proportion of outliers or missingness Bayesian 

CFA and frequentist CFA have roughly the same results (Scheines, Hoijtink, & Boomsma, 1999). 

Bayesian CFA can however offer several advantages over the frequentist approach such as 

computational advantages and intuitive interpretation of the results (Muthén & Asparouhov, 2012; 

Van de Schoot et al., 2014). Bayesian CFA also enables new modelling approaches (Muthén & 

Asparouhov, 2012), such as approximate invariance (i.e. alignment; Muthén & Muthén, 2013; Van 

de Schoot et al., 2013). Researchers can, furthermore, incorporate background knowledge into 

their analyses, through the specification of prior information (e.g., Van de Schoot et al., 2014). As 

such, Bayesian CFA can ‘simply’ be used as a different estimator, but it can also provide access to 

CFA models that are not feasible within a frequentist framework (Kaplan & Depaoli, 2012). While 

the application of Bayesian CFA is on the rise, some issues warrant further research. One of these 

aspects is the objective assessment of overall model fit within large samples. While current 

measures for model fit within Bayesian CFA show positive properties within studies with small 
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samples, within large samples, surpassing 1,000 subjects, the sensitivity of the overall fit statistic 

to detect negligible differences between the observed data and the hypothesized model is high 

(Hoijtink & Van de Schoot, in press). Within empirical settings, in which negligible deviations 

from the hypothesized model are always expected, an increase in sample size inevitably leads 

therefore to a deterioration of model fit (MacCallum, 2003). That is, acceptance rates of models 

with a “small” misspecification (e.g. non-specified negligible cross-loading) decrease with 

increasing sample size (Asparouhov & Muthen, 2010). For applied research this makes it difficult 

to objectively assess, interpret, and communicate the quality of the model. Consider, for example, 

that the CLASS would be compared across different countries with a large number of 

measurements per country in the study. As within empirical studies discrepancy between the 

hypothesized and observed model is expected, this would result in a deteriorated model fit. This 

could result in false conclusion with regard to the validity and application of the instrument across 

countries. While overall model fit is not synonymous with model quality, it constitutes an 

important and integral part of it (Bentler, 2007; Millsap, 2007). The current study introduces and 

validates a fit measure, the Bayesian Root Mean Square Error of Approximation (BRMSEA), 

which is less sensitive for large samples. This could improve assessment of overall model fit 

within Bayesian CFA with large samples, enhancing application of this framework to provide 

insight regarding the reliability and validity of measurement instruments.  

Evaluation of the model fit within Bayesian CFA relies on the validity of the model for 

future observations (Kaplan & Depaoli, 2012). To simulate such future observations, replications 

of the observed data are generated (Levy, 2011). The χ2 for the observed and replicated (or 

updated) data is subsequently computed for each iteration within the Markov Chain (Levy, 2011). 

Within Bayesian CFA the posterior predictive p-value (ppp) checks the proportion of iterations for 

which the replicated χ2 exceeds the observed χ2 (for other implementations of the ppp see, Gelman, 
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Carlin, Stern, & Rubin, 2014; Lee, 2007). A “good” fit is indicated if the ppp is around .50 

(Gelman et al., 2014; Muthén & Asparouhov, 2012).  The ppp is found to be robust for assessing 

model fit within small samples (Asparouhov & Muthén, 2010; Lee & Song, 2004; Rupp, Dey, & 

Zumbo, 2004). It is especially through these characteristics, including the use of priors, that 

Bayesian CFA works so well in small samples as it is not based on large-sample theory. For large 

samples it seems however that the ppp becomes sensitive for trivial deviations from the 

hypothesized model (Hoijtink & Van de Schoot, in press). A simulation study by Asparouhov and 

Muthén (2010) showed, for example, that despite the robustness of the ppp for models with a 

“minor” misspecification for larger samples compared to p-values within frequentist CFA, 

rejection rates still increase. In this study a “minor” misspecification was defined as the omission 

of standardized cross-loadings smaller than .1 within a CFA. Rejection rates increased with 

increasing sample sizes (N = 300, 500, and 1,000) both for frequentist CFA (19%, 21%, and 44% 

respectively) and Bayesian CFA (6%, 12%, and 29% respectively). While studies within Bayesian 

CFA regarding this phenomenon, or the functioning of model fit in general, are underrepresented 

(Levy, 2011; Rindskopf, 2012), it seems that the sensitivity of the ppp to detect negligible 

differences within large samples approaches 1.0. As such, it seems the ppp is well suitable for 

studies with small to moderate samples, but loses it salience within studies using large samples. 

To resolve this problem within frequentist CFA, fit indices are frequently used (Bentler, 

1990; Kline, 2011). Fit indices provide, on a continuous scale, a quantitative measure of model fit. 

In general terms it can be stated that they provide a credibility check of models while taking into 

account the overall and specific discrepancy between the model and the population (MacCallum, 

2003). The first criterion for such fit indices is that they should not be penalized for an increasing 

sample size (Marsh, Balla, & McDonald, 1988). The second criterion is the correction for model 

complexity to ensure that there is no free lunch regarding the inclusion of extra parameters – 
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which always improves model fit (Browne & Cudeck, 1992). Fit indices provide a goodness or a 

badness-of-fit. In the former, a higher value (often towards 1) indicates a better fitting model while 

in the latter, a lower value (often towards 0) indicates a better fitting model (West, Taylor, & Wu, 

2012). Facilitating the interpretation of fit indices cut-off values are proposed indicating “good”, 

“acceptable”, and “poor” fit (Browne & Cudeck, 1992; Hu & Bentler, 1999).  

It should be noted that there is a long-standing and ongoing discussion about fit indices 

(e.g., Barrett, 2007). This debate particularly focuses on the reliance on indicative thresholds (or 

cut-off points) as golden rules, but also on the neglect of the predictive quality of the models and 

the negligence with respect to a significant χ2 (e.g., Fan & Sivo, 2007; Marsh, Hau, & Wen, 2004; 

McDonald & Ho, 2002). In line with Lai and Green (2016), quotation marks are therefore used in 

the present article for quantifications of model fit (e.g. “good” model) and misspecification (e.g. 

“large” misspecification) to indicate the ambiguity of such qualifications. Notwithstanding 

theoretical and statistical criticisms, fit indices can play however a crucial, but not solitary, role in 

in the assessment of model quality as qualitative judgment about the overall model fit (e.g., 

Bentler, 2007; Kline, 2011; Millsap, 2007; Yuan, 2005). Without such quantifications, the 

judgment of model quality within large sample Bayesian CFA models relies almost solely on 

subjective measures. Thresholds provide a standard – which is ambiguous by nature – enabling 

transparent assessment and communication of model quality. A fit index which is robust to an 

increased sample size is therefore crucial as it would lead to an improved understanding of model 

fit and accessibility for Bayesian CFA within large samples (e.g., Cieciuch, Davidov, Schmidt, 

Algesheimer, & Schwartz, 2014; Milojev, Osborne, Greaves, Barlow, & Sibley, 2013; Lung, 

Chiang, Lin, Shu, & Lee, 2011). Assessing model quality in such samples would be greatly 

enhanced by a fit index which is informative within large samples.  
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The present article is the first to explore whether the rationale of such a fit index (i.e. the 

RMSEA) can be applied within Bayesian CFA (i.e. the BRMSEA) to provide a valid evaluation of 

model fit within large samples. The motivation to implement the rationale of the RMSEA within 

Bayesian CFA is threefold. First, within frequentist CFA the RMSEA has been shown to work 

especially well with large samples (Chen, Curran, Bollen, Kirby, & Paxton, 2008; Curran, Bollen, 

Chen, Paxton, & Kirby, 2003; MacCallum, Browne, & Sugawara, 1996), which is exactly the area 

in which the ppp become less useful. Second, the RMSEA is an absolute fit index and does 

therefore not require a baseline, or empty, model (Steiger & Lind, 1980; West et al., 2012). Such a 

baseline model would be contradictory with the Bayesian framework regarding the inclusion of 

prior knowledge of the model. Third, the RMSEA enables the computation of a confidence 

interval (CI) which provides information regarding the trustworthiness of the model fit (Browne & 

Cudeck, 1992; Steiger, 1990, 2000). This enhances comparability as this corresponds to the 

approach within the Bayesian framework of reporting posterior probability intervals (PPI; Van de 

Schoot et al., 2014). While not mathematically equivalent, the PPI and the CI serve related 

inferential goals. These aspects support the implementation of the BRMSEA as a fit index within 

Bayesian CFA. Additionally, the BRMSEA should also function in accordance with the prior 

specification of a model, as this influences the overall fit and complexity of a model 

(Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). Correct and informative priors should 

therefore positively affect the BRMSEA and vice-versa. It is hypothesized that the BRMSEA 

accurately assesses model fit in Bayesian CFA within large samples while the ppp in contrast loses 

its salience for such samples. 
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Technical Background of the RMSEA and the BRMSEA 

Background of the RMSEA 

Throughout the Technical Background a parameter with a hat (^) indicates the estimation of a 

population parameter. The RMSEA stems from the work by Steiger and Lind (1980) who explored 

the fit of a model, derived from a sample, in relation to the fit of the model in the true population. 

The fit (statistic) of a model within the population is defined as F0. If a model does not show 

perfect fit, which is to be expected in empirical settings, an estimate of F0 has to be derived (𝐹"). 

Browne & Cudeck (1992) argue that the sample fit (𝐹) of a model can be used to estimate the fit 

statistic (𝐹"): 

 𝐹" = (𝐹 − 𝑑)/(𝑁 − 1), (1) 

in which d is the number of free parameters and N the sample size. Equation 1 is under the 

assumption that 𝐹" indicates the degree of lack of fit taking into account the lack of fit arising due 

to sampling error. As such this estimation of 𝐹" takes the number of free parameters and the 

sample size into account to estimate the misfit of a model in the population. Browne and Cudeck 

(1992) further state that the model fit of a population decreases if free parameters (q) are added. 

These two premises result in a measure of discrepancy of the model per free parameter (ε) 

(Browne & Cudeck, 1992), defined as 

 𝜀 = ,-
d

 (2) 

which prefers parsimonious models. That is, if two models have the same fit within the population 

the model with fewer estimated parameters will yield a smaller value (MacCallum et al., 1996). To 

estimate F0 in Equation 2 it can be substituted as 
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 𝜀 = ,/0
d(N-1)

.  (3) 

As it is possible that the numerator is negative, an added condition is that if 𝑑 > 𝐹 the 𝜀 is set to 

zero. This results in a theoretical range of 𝜀 from zero to infinity in which a value of zero denotes a 

perfect fitting model, while larger values reflect a poor model fit (badness-of-fit).  

Implementation of the RMSEA within frequentist CFA 

Within the frequentist framework the 𝜀 from Equation 3 is referred to as the RMSEA which uses 

the χ2 to reflect the degree of misfit (𝐹; Equation 3): 

 RMSEA = 9:/df
df(N-1)

.  (4) 

In Equation 4 df (degrees of freedom) reflects the number of free parameters in the model: 

 df = 𝑝 − 𝑞.  (5) 

With p being the number of number of observations, defined as the number of unique elements 

within the sample variance-covariance matrix (v[v+1]/2) and q the number of free (estimated) 

parameters. If the mean structure is included, this number is summed with the number of (v) 

observed variables (Kline, 2011).  

The 𝐹 from Equation 3 can also be replaced with the misfit from the general least square 

(GLS) or asymptotically distribution free (ADF) instead of the maximum likelihood (ML) based χ2 

(Browne & Cudeck, 1992). Commonly used cut-off points for the RMSEA are values below 0.05 

denoting good model fit, values below 0.08 denoting adequate model fit. Hu and Bentler (1999) 

suggested that for a good model fit a cut-off point of 0.06 could also be used.  
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A key strength of the RMSEA is that the sampling distribution is known under certain 

assumptions. Support for this notion is based on the fact that the asymptotic distribution of 

RMSEA is a re-scaled χ2 for a given sample size, df, and a noncentrality parameter λ (Browne & 

Cudeck, 1992). The lower (LL) and upper limit (UL) of the RMSEA CI are given as 

 RMSEACI =
@LL

df(N-1)
; @UL

df(N-1)
. (6) 

This CI enables the test whether a model exhibits close or worse fit, which is achieved when the 

lower limit is below or above a certain threshold (Browne & Cudeck, 1992).  

Implementation of the BRMSEA within Bayesian CFA 

Inspired by Browne and Cudeck (1992) who stated that different measures of discrepancy (i.e. χ2) 

can be used for the estimation of ε̂  from Equation 3, we propose that it can also be applied within 

Bayesian CFA. Hence, the fact that the RMSEA was developed and applied within a frequentist 

framework does not hinder the implementation of its rationale within the Bayesian framework. 

The notion that the degree of misfit (𝐹) should be rescaled according to the number of estimated 

parameters (d) and sample size (N) is therefore implemented within Bayesian CFA. Within a 

Bayesian framework there is, however, no classical discrepancy function or df. This section 

illustrates the parameters from a Bayesian CFA framework which are implemented in Equation 3 

to achieve a Bayesian variant of the RMSEA the BRMSEA.  

With regards to model misfit (𝐹), for which the χ2 is used within the frequentist framework 

(Equation 5), the difference between the observed and replicated χ2 (𝜒obsH
I − 𝜒repH

I ) for each 

iteration (i; after burn-in) is used for the BRMSEA. Within Bayesian CFA this difference can be 

regarded as the degree of misfit (𝐹) in Equation 3. Similar to a classical discrepancy function, such 
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as the χ2 within frequentist CFA, 𝜒obsH
I − 𝜒repH

I  will positively increase with increasing levels of 

misfit. In contrast to classical discrepancy function, such as the χ2 within frequentist CFA,  𝜒obsH
I −

𝜒repH
I  can be negative for an iteration. For multiple iterations, however, 𝜒obsI − 𝜒repI  will 

approximately result in 0 for a perfect fitting model and will positively increase with increasing 

levels of misfit, similar to a classical discrepancy function.  

To control for model complexity, it is important to include the effect that prior information 

has on the estimation process, as prior information can alter the “effective” number of estimated 

parameters. A prior with a mean of zero and a very small variance is, for example, nearly equal to 

a parameter which is fixed to zero (Asparouhov, Muthen, & Morin, 2015). Especially if a 

multitude of such priors are used, the difference between the number of estimated parameters and 

the effective number of estimated parameters can become substantial. To correct for this effect 

within Bayesian CFA the effective number of parameters (pD; Spiegelhalter et al., 2002) are used. 

The pD parameter is developed in conjunction with the deviance information criterion (DIC) as 

penalty term for complexity. Subtracting the pD, instead of q (Equation 5), from the number of 

observations (p) gives a fair estimation of the effective model complexity within Bayesian CFA. 

Equivalent models with differing prior information will, therefore, have a different model 

complexity which is in line with the Bayesian framework. 

Combining the model fit of Bayesian CFA (𝜒obsH
I − 𝜒repH

I ) with the effective number of 

parameters (pD) results in the following equation for the BRMSEA: 

 BRMSEAN =
9obsH
: 	/	9repH

: 	/	(P	/	PQ)

(P	/	PQ)(R	/	S)
. (7) 
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As such, the BRMSEA results in a set of (i) rescaled differences between the observed and 

replicated χ2, taking into account the (effective) number of estimated parameters and sample size. 

By doing so it provides an estimation of the validity of the model for the population while taking 

into account the lack of fit arising due to sampling error. The numerator of the BRMSEA will be 

set at 0 for an iteration if it is negative. As 𝜒obsI − 𝜒repI  will on average be 0 in a perfect fitting 

model, the BRMSEA will also be zero for perfectly fitting models, and positively increase towards 

infinity for increasing levels of misspecification.  

In contrast to the frequentist framework, in which the CI of the RMSEA is commonly 

computed on the basis of asymptotic theory, the PPI of the BRMSEA should be derived, as any 

posterior measure within Bayesian CFA, from the posterior density. The PPI (e.g. 90%) of the 

BRMSEA is extracted from the total set of iterations. In the present study the lower limit is 5% 

and the upper limit 95%, as the used PPI of the BRMSEA is 90%. This 90% is in line with the 

90% CI often used for the RMSEA (Browne & Cudeck, 1992). Due to the (theoretical) 

comparability of the RMSEA and BRMSEA it is hypothesized that their functioning regarding the 

assessment of overall model fit is equivalent. A simulation study is proposed to empirically test 

this hypothesized functioning of the BRMSEA within Bayesian CFA. 

Simulation Study 

In this article the validity of the BRMSEA within a Bayesian CFA is evaluated (see Supplement A 

for R-code). The characteristics of the BRMSEA and the ppp are examined within various 

conditions in a simulation study. It is hypothesized that for large samples the ppp rejects all 

models with any form of (“small”) misspecification while the BRMSEA only rejects models 

which a “large” misspecification and accepts models with a “small” misspecification. The 

comparison with the RMSEA is made to see whether its characteristics are analogous with those of 
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the BRMSEA. The frequentist χ2 based p-value and the Bayesian ppp are expected to reject all 

models with any form of misspecification. Implementation of the BRMSEA will be further 

facilitated and evaluated by the implementation of cut-off points. 

Methods 

Data generation 

The simulation study consisted of two sections. In the first section different population covariance 

matrices (conditions) were tested against a common 1-factor CFA model. In the second section a 

partly different set of conditions was tested against a 2-factor CFA model.  

The different population covariance matrices (conditions) in the first section, which were 

tested against a common 1-factor CFA model (Figure 1A), were specified varying the following 

four aspects: (1) Specification of the population factor model (Model A, B, C, D, and E; see Figure 

1), (2) number of indicators (6 and 12), (3) magnitude of factor loadings (.5 and .7), and (4) 

sample size (50, 100, 250, 500, 1,000, 5,000, and 10,000). The specification of the population 

factor models (partly based on, Shevlin & Miles, 1998), which were used to generate the data, 

were increasingly different compared to a common 1-factor model. Specification B and C were 

regarded as “small” misspecifications as the residual correlation was .1 and the salient pattern of 

the factor loadings corresponded with that of the reference model (Heene, Hilbert, Freudenthaler, 

& Bühner, 2012). The number of residual correlation, especially for specification B, was 

furthermore limited. Specification D and especially E were seen as models with more substantial 

(“large”) amounts of misspecification, primarily because the difference in the salient pattern of the 

factor structure and the moderate correlation between these factors.  

For the second section the reference models was a 2-factor model (specification D; Figure 

1D). In this section the number of indicators (i.e., 12) and the magnitude of factor loadings (i.e., 
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.7) were not varied and were based on the findings in the first section. Sample size variation was 

equal to that in the first section. Specification of the population factor model, partly based on 

Asparouhov and Muthen (2010), consisted of four models (Model D, E, F1, and F2). Models F1 

and F2 were similar to model D except the inclusion of cross loadings between the sixth indicator 

and the second factor and the seventh indicator and the first factor (Figure 1). These cross loadings 

were “small” and 10% of the salient factor loadings in model F1 (.07) and “moderate” in model F2 

(.35). The “small” cross loadings in model F1 should result in a rejection of the model whilst the 

standardized cross loadings above .3 in model F2 should result in a majority the models being 

rejected (Asparouhov & Muthen, 2010; Saris, Satorra, Van der Veld, 2009). Specifications A 

through C were not tested against the reference model in the second section as this would be 

complicated by the freely estimated covariance between the two factors, which would approach 1 

in these models, resulting in a bias in parameter estimates but not in overall model fit. 

All models were identified through constraining the factor variance(s) to 1. Intercepts of all 

indicators and latent factor means were specified to be zero. Residuals were estimated through 

subtracting 1 with the associated magnitude of the factor loadings squared. The different variations 

(i.e. specification, number of indicators, magnitude of factor loadings, and sample size) resulted in 

a total of 140 (5 × 2 × 2 × 7) different conditions in the first section and 28 (4 × 1 × 1 × 7) in the 

second section. For each condition 500 samples were generated. Cumulative averages plots 

indicated that the number of samples was sufficient as estimates were fully stabilized by 500 

samples. Population RMSEA for the various conditions, in both sections, are presented in Table 1. 

Estimation and prior specification 

In both sections two estimators were used, that is maximum likelihood (ML) for the frequentist 

CFA and Bayesian estimation for the Bayesian CFA. For the Bayesian estimation, three variations 
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regarding the specification of priors were examined. Differentiation in prior specification was 

simulated to examine the effect of priors on the characteristics of the BRMSEA. The first variation 

included the default, diffuse priors of Mplus which are N(0,∞) for the intercepts and factor 

loadings, and IG(-1, 0) for residual variances (Asparouhov & Muthén, 2010; Muthén & Muthén, 

1998). For the second variation the prior means of the factor loadings and intercepts of the 

indicators had the “correct” parameter of the current condition (e.g. .7 for a factor loading). As the 

priors furthermore had a variance of 0.05 (SD = 0.22), these priors were regarded as conservative 

(weakly informative). The third variation of prior specification was only applied in the second 

section. This variation included wrong prior specifications for the factor loadings (.9 instead of .7) 

and factor covariance (.3 instead of .5). Priors had furthermore a variance of .005 (SD = 0.07), 

which was 10 times smaller as in the conservative prior variation, to assure deviation of the prior 

distribution of the reference model. It should be noted that these prior variations were only used 

for the model estimation and not for the simulation of the underlying data. As such, each (single) 

sample was estimated using different prior variations for the Bayesian CFA (and a single 

frequentist CFA model using the ML estimator). 

All of the models were estimated as a common 1-factor model (Figure 1A) in the first 

section, with either 6 or 12 indicators, or as a 2-factor model (Figure 1D), with 12 indicators, in the 

second section. The estimated model was identified through the specification of the latent factor 

variance at 1 and its mean at 0. For the model in the second section the covariance between the 

two factors was freely estimated. The hypothesized models corresponded with the conditions in 

which the specification of the reference model was used. The other specifications differed from the 

hypothesized model (Table 1). In these instances, the hypothesized models did not reflect the 

pattern of the underlying factor structure of the population used to generate the data.  
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For the models all default estimation settings were used except for the convergence criteria 

of the Bayesian CFA models. See Supplement B and Muthén and Muthén (1998) for default 

settings. The default Bayesian CFA convergence criterion (BCONVERGENCE) of 0.05 was set to 

0.01. Mplus multiplies this criterion with the multiplicity factor of the model, which can range 

from 1 (in a model with one parameter) to 2 (in a model with a large number of parameters), to 

compute the potential scale reduction factor (PSR) of each parameter of a model (for more details 

see Asparouhov & Muthén, 2010). It is argued, however, that a stringent PSR criterion is 

preferable (Brown, 2015). A BCONVERGENCE of 0.01 will, as such, result in the requirement 

that PSR values are below 1.02 instead of 1.10 with the default convergence  criterion of 0.05 

(Depaoli & Van de Schoot, 2015). Convergence was furthermore facilitated by a fixed minimum 

of iterations for each model of at least 5,000 with a maximum 20,000. That is, if by the 20,000th 

iteration the highest PSR was not below the convergence criterion, the model did not converge. 

Random checks indicated that further increasing the number of iterations did not alter the results. 

Analytic Strategy 

For both sections the same analytic strategy was used, and were therefore reported in conjunction. 

First the convergence of the models was inspected (detailed tables are provided in Supplement C). 

Models that did not converge were excluded from the analysis. The mean of the relevant 

parameters outcomes, the p-value and 90% CI RMSEA for frequentist CFA and the ppp and 90% 

PPI BRMSEA for Bayesian CFA, were (visually) inspected for the different settings. The 

applicability of these parameters for evaluation of model acceptance was, furthermore, quantified 

by implementing cut-off values. For the χ2 p-value the conventional cut-off value of .05 was used 

(α = .05). For the ppp a value of .05 was used, based on the recommendations by Muthén and 

Asparouhov (2012). To quantify the CI of the RMSEA the lower limit should be below .05 and the 
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upper limit below .08 (Browne & Cudeck, 1992; Kenny, 2014). These cut-off points were also 

applied for the BRMSEA as preliminary results showed, especially for large samples, striking 

similarities between the RMSEA and the BRMSEA.  

The software package Mplus (Version 7; Muthén & Muthén, 1998) was used for the data 

simulation based on the population covariance matrices and for the model estimation (see 

Suplement B for the syntax of both procedures). R (Version 3.1.1; R Development Core Team, 

2014) was used to program the simulation and analyse the results. MplusAutomation (Version 0.6-

2; Hallquist & Wiley, 2013) was used to facilitate the exchange between both programs. 

Results 

Convergence 

In Tables C1 and C2 the convergence of the models is shown. Convergence rate of the frequentist 

models was below 90% for some conditions with the 1-factor reference model, especially for small 

samples and “large” misspecification. For the Bayesian CFA models, almost all models 

converged. In the first section no specific parameter was specifically associated with non-

convergence in the Bayesian models. In the second section, however, the covariance parameter 

between the two latent factors had most of the time the highest PSR if model did not converge 

(87%). The 1,218 models (0.45%) that did not converge were excluded from further analysis.  

BRMSEA and RMSEA 

Figures 2-4 show the mean values of the 90% CI RMSEA within each condition for the frequentist 

CFA models. For the Bayesian estimation procedures, with diffuse, conservative, and wrong, 

priors, the mean values of the 90% PPI BRMSEA are shown for each condition. As indicated in 

the analytic strategy, the performance of the 90% CI RMSEA and the 90% PPI BRMSEA was also 
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quantified by the implementation of cut-off points to indicate whether a model showed an 

acceptable fit (Tables 2-4). For the RMSEA a cut-off point for the upper limit of 0.08 and for the 

lower limit of 0.05 was used, values below these limits indicated “acceptable” fit (Hu & Bentler, 

1999). As the average PPI of the BRMSEA showed striking similarities with that of the average CI 

of the RMSEA (Figures 2-4), especially for large samples (N ≥ 1,000), it seems that the properties 

of the BRMSEA and RMSEA are analogous for large samples. The cut-off points from the 

RMSEA were, therefore, also applied for the BRMSEA. These cut-off values were also included 

in Figures 2-4 to compare them with the mean values for each condition. As the differences 

between conservative and diffuse priors was marginal in the first section, especially for large 

samples (Figures 2-3), only the results for the diffuse priors were presented in Tables 2 and 3. 

For large samples the 90% CI RMSEA showed lower values for models with lower levels 

of misspecification, compared to models with higher levels of misspecification. These lower 

values of the 90% CI RMSEA for models with lower levels of misspecification, compared to 

models with higher levels of misspecification, was also found for the conditions in the second 

section (Figure 4). This pattern was also reflected when the performance of the RMSEA was 

inspected based on model acceptance using the cut-off values (Tables 2-4). Table 5 summarizes 

these findings of this acceptance rate for large samples (N ≥ 1,000). For large samples the 90% CI 

RMSEA proved to successfully assess model fit. 

In the conditions with 12 indicators the BRMSEA seems invalid for small samples as both 

the lower and the upper bound of the 90% PPI BRMSEA were zero, regardless for the level of 

misspecification. The Bayesian CFA estimation procedure using conservative priors compared to 

estimation procedure using diffuse priors showed a narrower PPI when sample size was small 

indicating the effect of prior information on the BRMSEA. The wrong prior variation, in contrast, 

resulted in a broader and somewhat higher BRMSEA (Figure 4). This effect was also visible for 
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conditions with larger sample sizes. For largest samples the 90% PPI BRMSEA approached the 

same values regardless of the prior variation (Figures 2-4). These findings were also reflected 

when the performance of the BRMSEA was inspected based on models acceptance using cut-off 

values (Tables 2-4). Table 5 summarizes these findings of this acceptance rate for large samples (N 

≥ 1,000). The 90% PPI BRMSEA showed to successfully assess model fit within large samples. 

The BRMSEA showed the same characteristics as the RMSEA for large samples. The most 

noteworthy difference, with regards to model acceptance, was within the condition with 6 

indicators and large (.7) factor loadings (Table 2). Figure 3 shows, however, that the absolute 

difference between the RMSEA and BRMSEA in this condition was marginal. As the BRMSEA is 

not derived from asymptotic theory the form was different compared to the RMSEA. For large 

samples, however, the BRMSEA, showed a striking similarity with the RMSEA (Figures 2-4). For 

large samples the characteristics of the RMSEA and BRMSEA seem, therefore, comparable. That 

is, both the values of the 90% CI RMSEA and the 90% PPI BRMSEA were low for models 

without or “small” misspecification and high for models with “large” misspecification.  

ppp and p-value 

As sample size increased the ppp moved towards 0, except for the condition with specification A. 

The move towards 0 occurred “faster” if the factor loadings were larger, if the misspecification 

was larger, or the wrong prior variation was used (Figures 2-3). The “dip” in the average ppp of 

the 2-factor reference model with the wrong prior variation was, furthermore, noteworthy. 

Regardless of the priors and the condition, however, the ppp reached zero when sample size 

increased towards 10,000 for any level of misspecification. This finding was also supported by the 

implementation of the cut-off point (.05) for the ppp (Table 5).  
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These findings for the ppp also hold, as expected, for the χ2 based p-value (Figures 2-4). It 

has to be noted however that whilst the ppp had the same pattern as the χ2 based p-value for large 

samples, the ppp showed to be superior for the smallest samples (N = 50) compared to the χ2 based 

p-value (Table 2-4). Using the χ2 for the reference models in the largest samples within frequentist 

CFA, furthermore, resulted in a rejection rate of ~5%. This corresponds with the type I error 

induced by the nominal α (.05). 

Empirical Illustration 

Methods 

The goal of the empirical illustration was to demonstrate what happens if different sample sizes, 

from the same population, are used. For this illustration, the proposed factor structure of the skill 

discretion subscale of the Job Content Questionnaire (Karasek, 1985) was examined. This section 

provides, however, by no means a comprehensive overview of an actual Bayesian CFA analysis.  

Data from the ongoing Maastricht Cohort Study (MCS) on fatigue at work was used (see 

Kant et al., 2003). The longitudinal study gathers data of employees from 45 companies by means 

of self-administered questionnaires. The baseline questionnaires in May 1998 were sent together 

with an invitation letter to the participants. 26,978 Employees received the baseline questionnaire, 

of which 12,161 responded. 21 participants were excluded due to technical reasons, resulting in a 

baseline population of 12,140. The skill discretion subscale of the JCQ was used for the factor 

model. This subscale assesses the level of skill and creativity required on the job and the flexibility 

permitted the worker in deciding what skills to employ. This subscale included 6 items (e.g., “My 

job requires that I learn new things”) which were answered on a 4-point Likert scale (“strongly 

disagree” to “strongly agree”).  
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Analytic strategy 

All items were hypothesized to load on a single factor reflecting skill discretion. Preliminary 

analyses showed however a strong dependency between the second and fourth item. Therefore, a 

residual covariance between these items was modelled. The structure of the hypothesized model 

reflected the model in Figure 1B, except that the residual covariance was not fixed to .1 but was 

freely estimated. To illustrate the effect of sample size on the estimation of such a factor model 

within Bayesian and frequentist CFA random samples of various sizes were extracted from the 

original data. The selected sample sizes were equal to the ones used in the simulation study (50, 

100, 250, 500, 1,000, 5,000, and 10,000). To control for a possible difference between the samples 

regarding the overall score on skill discretion, the caret (Version 6.0-41; Kuhn, 2015) package was 

used to extract training sets which were matched on the sum score of the skill discretion sub-scale. 

There were, therefore, no differences expected between the samples regarding their average skill 

discretion score. The model was tested for each data-set using the same three estimation 

procedures as in the first section of the simulation study. 

Information from three articles, investigating the factor structure of the skill discretion 

subscale, were used for the Bayesian analysis using conservative priors (Cheng, Luh, & Guo, 

2003; De Araújo & Karasek, 2008; Pelfrene et al., 2003). The mean values of the factor loadings 

of the three articles were: Item 1 (Develop own abilities) = .68, item 2 (Requires creativity) = .67, 

item 3 (Variety) = .54, item 4 (High skill level) = .57, item 5 (Learn new things) = .50, and item 6 

(Repetitive work) = .39. These articles used, however, exploratory factor analysis and the language 

of the questionnaires differed. Therefore a conventional prior mean of 0.4 was chosen with a 

variance of 0.1 for all factor loadings. Priors for other parameters were not specified. 
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Results 

Table 6 shows that for large samples the RMSEA indicated adequate model fit. For small samples, 

in contrast, the upper limit exceeds the cut-off point of .08. The same pattern emerges for the 

BRMSEA, both with conservative and diffuse priors. The ppp rejected the model for the largest 

sample sizes (N ≥ 5,000), whilst it accepted the model when sample size was small to moderate (N 

≤ 1,000). Parameter estimates were nearly identical when sample size was N ≥ 5,000. If the sample 

size was 10,000 the factor loading for the first item was .40 (95% PPI [.38–.41]) in the Bayesian 

CFA model with conservative priors, .40 (95% PPI [.38–.41]) with diffuse priors, and .40 (95% CI 

[.38–.41]) in the frequentist CFA model, showing comparability of parameter estimates (see also 

Scheines et al., 1999). 

Conclusion 

At the moment there is no appropriate summary statistic within Bayesian CFA protecting against 

an undesirably high sensitivity to detect negligible differences within large samples. The present 

article confirms that such a statistic is needed as the posterior predictive p value (ppp) rejects 

models with only a “small” deviation from the hypothesized model within such large samples, in 

accordance with previous studies (e.g. Asparouhov & Muthén, 2010). Our (simulation) study 

shows that the newly proposed Bayesian root mean square error of approximation (BRMSEA; 

Equation 7), inspired on the rationale of RMSEA (Equation 4; Browne & Cudeck, 1992), is a valid 

fit index for these large sample studies. As such the credibility of large sample Bayesian CFA 

models can be evaluated with this new BRMSEA which adjusts the model fit for model 

complexity and, most importantly, sample size. This enhances application of the Bayesian 

framework within CFA to assess the validity and reliability of (educational and psychological) 

measures (DiStefano & Hess, 2005). 
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Cut-off points were used to aid the evaluation of the BRMSEA and assess its validity. It 

seems that these cut-off points are fruitful for successful model selection using the 90% PPI of the 

BRMSEA within Bayesian CFA when investigating large samples. The BRMSEA could be 

facilitated with a cut-off value of 0.05 for the lower limit in conjunction with a cut-off value of 

0.08 for the upper limit as an indication of “good” fit. In the present simulation study these cut-off 

points resulted in the acceptance of models with none or “small” amounts of misspecification 

while “strongly” misspecified models were mostly rejected. The findings with respect to the cut-

off points hold for models in which the sample size surpasses 1,000. This reliance on large 

samples is not regarded as a shortcoming of the BRMSEA. It is, after all, for these large sample 

sizes that a fit index was sought as within these samples the ppp is too sensitive for “trivial” 

misspecifications. As previous and the current simulation studies show, however, characteristics of 

the (B)RMSEA depend on a wide variety of model and data characteristics (Savalei, 2012). 

Researchers should therefore use cut-off points as a supportive guideline for interpretation of the 

quality of the model in conjunction with aspects such as, substantive theory, parameter estimates, 

cross-validation, and predictive quality (e.g., Bentler, 2007; Kaplan & Depaoli, 2012; Marsh et al., 

2004; Millsap, 2007; Steiger, 2007; Yuan, 2005). As such, fit indices are not a panacea for the 

assessment of model quality (e.g., Marsh et al., 2004; Millsap, 2007; Steiger, 2014), nor should a 

low ppp be outrightly ignored simply because the sample size is large. A promising approach to 

use more informative cut-off points is the use of equivalence testing (Yuan, Chan, Marcoulides, & 

Bentler, 2016). This method takes into account the minimum tolerable size (T-size) of 

misspecification for fit indices (i.e. RMSEA). This approach could also be fruitful for further 

development of the BRMSEA and its cut-off points. Within the current study this method was, 

however, not taken into account to limit the number of ‘moving-parts’ within the simulation. That 

is, the primary goal of this study was to demonstrate the validity of the BRMSEA as such, not to 
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establish ground-truth for specific cut-off points. For a more informative selection of cut-off 

points, however, implementation of the equivalence testing approach would be recommended 

(Marcoulides & Yuan, 2017). Still, the cut-off points used in the current study seem to provide a 

valid first step for applied researchers for accessible and transparent assessment of overall model 

quality within Bayesian CFA models.  

The current analyses again illustrate the sensitivity of the ppp for any form of 

misspecification when sample size increases. These findings with respect to the ppp are important 

for an improved understanding of model diagnostics within Bayesian CFA, and Bayesian 

structural equation modelling in general (Levy, 2011; MacCallum et al., 2012; Rindskopf, 2012). 

Although the quantification of misspecification remains subjective, the main rationale entails that 

even the most marginal deviations eventually lead to an deterioration of the ppp when the sample 

size increases. While this enhanced precision is informative, it can also hinder the practical 

application within large samples. Within large samples the BRMSEA can, therefore, be seen as 

complementary to the ppp. While the BRMSEA provides an indication of overall model fit it does 

not provide information regarding the source and form of misspecification. To gain such insights 

the method proposed by Muthen and Asparouhov (2012) can be used. Leaving aside the possible 

threats of post hoc model tinkering this method provides valuable information for researchers 

regarding the model as it quantifies the (marginal) deviations of the model (e.g., Bentler, 2007; 

McDonald & Ho, 2002; Stromeyer et al., 2015). Even these “enhanced” models will, however, be 

rejected on the basis of the ppp with increasing sample sizes. Specification F1 in the second 

section, for example, would eventually also been rejected even if informative priors were used for 

the cross loadings. Further development of the BRMSEA is therefore recommended, as is the 

development of fit indices within Bayesian CFA in general. The CFI and TLI would seem to be 

good candidates, based on their implementation within frequentist CFA (e.g., Hu & Bentler, 
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1999). As indicated in the Introduction, however, defining an independence model within a 

Bayesian framework could be difficult. That is, if prior information is provided an empty model 

would be difficult to define. Within a frequentist framework such a model is simply a model 

without any relation between any of the variables. Such an absence of relation contradicts with the 

inclusion of prior knowledge. Estimating the CFI and TLI within a Bayesian framework would, 

therefore, require a theoretical discussion and examination of an independence model within 

Bayesian CFA. 

The parameter estimates of the empirical illustration in the present study show the approximate 

equivalence between Bayesian and frequentist CFA models within large samples for equivalent 

models. There are, however, specific models that are only possible within Bayesian CFA and therefore 

have no equivalent within frequentist CFA. An example of such a Bayesian CFA model, compared 

to frequentist CFA, concerns the possibility to assess approximate measurement invariance 

(Muthén & Muthén, 2013; Van de Schoot et al., 2013). Currently, however, it appears that for 

large samples it seems impossible to reach a satisfactory “baseline” model as it is likely that 

almost all models will be rejected based on the ppp. The empirical illustration shows that the ppp 

approaches zero when the sample size is large even while the model seems credible. In conclusion 

researchers are “penalized” too much when investigating a large sample. In contrast to ppp, the 

BRMSEA does not receive this “penalty” when assessing model fit within large samples (Steiger, 

2000). Within the empirical illustration, for example, the BRMSEA indicated a satisfactory model 

fit for the large samples which could enable specific analysis such as the assessment of 

approximate measurement invariance. 

Some limitations of the current study and the BRMSEA as a fit index in general should be 

addressed. It remains, foremost, important to test alternative models even if the model fit is 

satisfactory (Kline, 2011). As indicated by Browne and Cudeck (1992), model fit does not provide 
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a measure of plausibility but merely indicates the lack of fit within a model. Researchers should 

remain critical if there are alternative models that could better describe the data, or that the good fit 

is a result of overfitting. The assumptions regarding the level of misspecification could, 

furthermore, be debated and are always subject to “substantive and theoretical issues that are likely 

to be idiosyncratic to a particular study” (Marsh et al., 2004, p. 340). As with each simulation 

study, the number of conditions is limited. The BRMSEA is, furthermore, not applicable to models 

with categorical indicators due to constraints on the evaluation of the likelihood in such models 

(Asparouhov, 2010). For a valid BRMSEA, it is vital that the model shows adequate convergence 

and adheres to all other assumptions within Bayesian CFA (e.g., Depaoli & Van de Schoot ,2015). 

The finding that the BRMSEA is susceptible for prior information supports its embedding within 

the Bayesian framework (Rupp et al., 2004). It should be noted, however, that the BRMSEA, as 

the ppp, is by no means designed to evaluate prior specifications. This first introduction of the 

BRMSEA shows that all bodes well for its application within large sample Bayesian CFA studies. 

Such empirical studies have to prove the actual value of the BRMSEA in the evaluation of model 

fit. The proof of the pudding is, after all, in the eating. 

The assessment of model fit within Bayesian CFA using the new BRMSEA could be seen 

as contradictory to a “true” Bayesian approach (Kaplan & Depaoli, 2012). To cite Spiegelhalter et 

al. (2002): “In conclusion, it is clear that our pragmatic aims are muddying otherwise pure 

Bayesian waters” (p. 637). The BRMSEA is however embedded within the Bayesian framework 

as it includes the observed and replicated χ2 and the (effective) number of parameters. As such the 

BRMSEA is not directly derived from the RMSEA but inspired on its notion that a general fit 

statistic can be rescaled taking into account the sample size and model complexity (Steiger, 2000). 

As such the BRMSEA resolves the sensitivity of the current Bayesian CFA summary statistics for 

negligible differences within large samples. The BRMSEA will, therefore, result in a more 
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accessible and transparent application of Bayesian CFA within large sample models. An area in 

which, at the moment, it is only sporadically applied compared to small sample models (Muthén & 

Asparouhov, 2012; Rupp et al., 2004). It is probably through this focus on small samples and 

adjoining exploration of the properties of the summary statistics, that the properties of these 

summary statistics received less attention for large samples (Lee & Song, 2004). With the growing 

interest and usage of Bayesian theory within the field of CFA and the growing number of large 

data sets (e.g., Cieciuch, et al., 2014; Milojev et al., 2013; Lung et al., 2011), however, the need 

for a valid fit statistic within such conditions is evident and cannot be ignored. The data used for 

the empirical illustration is a clear example as many studies within the field of educational and 

psychological measurement use large samples in which oversensitivity for negligible deviations is 

a legitimate issue. The BRMSEA, with accompanying cut-off points for its 90% PPI, is a valid and 

intelligible fit index, which can be used to evaluate model fit within large sample size Bayesian 

CFA models. 
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Table 1 

Population parameters (Root Mean Square Error of Approximation) of each condition for the two 

different reference models, on the basis of the number of indicators, magnitude of factor loadings 

(rows), and specification (columns) 

 Indicators = 6  Indicators = 12 
 A B C D E  A B C D E F1 F2 
Reference model: 1 Factor (Specification A)  

.5 0.000 0.034 0.070 0.089 0.106  0.000 0.017 0.042 0.070 0.091 - - 

.7 0.000 0.052 0.103 0.204 0.234  0.000 0.025 0.063 0.149 0.188 - - 
Reference model: 2 Factor (Specification D)  

.7 - - - - -  - - - 0.000 0.141 0.013 0.061 
Note. Specification A is a common 1-factor model. Specification B is identical to specification A except for the 

inclusion of a small error covariance (.1) between the first and second indicator. Specification C is a 1-factor model 

with small error covariances (.1) between each subsequent pair of indicators. Specification D is a 2-factor model with 

a covariance of .5 between the two factors. Specification E is a 3-factor model with a covariance of .25 between the 

factors. Models F1 was similar to model D except the inclusion of a small (.07) cross loadings between the sixth 

indicator and the second factor and the seventh indicator and the first factor. Models F2 was similar to model F1 

except that the two cross loadings were moderate (.35). For specifications D through F2 the number of indicators is 

equally distributed across the factors. Residuals were computed by subtracting the squared factor loading from 1. 

Intercepts and factor means were estimated to be zero in all models. 
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Table 2 

Proportion of rejected models with 6 indicators of the first section, with the 1-factor model as 

reference model, using a cut-off point for the 90% confidence interval and 90% posterior 

probability intervals of the root mean square error of approximation (RMSEA) and Bayesian 

RMSEA (BRMSEA) for the upper limit of .08 and for the lower limit of .05 and of .05 for the 

posterior predictive p value and p-value for the Bayesian confirmatory factor analysis (CFA), with 

diffuse priors, and frequentist (CFA) 

 
Factor loadings = .5 Factor loadings = .7 

N Model BRMSEA ppp RMSEA p BRMSEA ppp RMSEA p 
50 A (ref) .92 .01 .90 .09 .90 .01 .90 .10 

 
B  .93 .01 .91 .11 .92 .01 .91 .13 

 
C  .96 .01 .95 .16 .98 .07 .98 .33 

 
D  .98 .02 .96 .20 1 .51 1 .84 

 
E  .95 .02 .96 .12 1 .61 1 .91 

100 A (ref) .72 .01 .80 .07 .67 .01 .80 .07 

 
B  .78 .01 .83 .11 .79 .03 .87 .17 

 
C  .91 .05 .94 .23 .97 .20 .99 .52 

 
D  .96 .11 .97 .39 1 .95 1 1.00 

 
E  .94 .1 .98 .37 1 .99 1 1 

250 A (ref) .08 .00 .36 .06 .07 .00 .34 .07 

 
B  .20 .02 .57 .18 .38 .08 .75 .35 

 
C  .66 .23 .90 .62 .96 .77 1.00 .95 

 
D  .84 .51 .97 .81 1 1 1 1 

 
E  .93 .68 1.00 .93 1 1 1 1 

500 A (ref) 0 .01 .03 .08 0 .01 .50 .08 

 
B  .01 .08 .18 .31 .13 .31 1 .65 

 
C  .46 .69 .81 .90 .98 1.00 1 1 

 
D  .81 .93 .97 .99 1 1 1 1 

 
E  .97 1 1 1 1 1 1 1 

1,000 A (ref) 0 .00 0 .07 0 .00 0 .06 

 
B  0 .22 .00 .58 .02 .74 .20 .93 

 
C  .33 .99 .74 1.00 1.00 1 1 1 

 
D  .89 1 .99 1 1 1 1 1 

 
E  1.00 1 1 1 1 1 1 1 

5,000 A (ref) 0 0 0 .06 0 0 0 .06 

 
B  0 1.00 0 1 .20 1 .10 1 

 
C  1 1 1.00 1 1 1 1 1 

 
D  1 1 1 1 1 1 1 1 

 
E  1 1 1 1 1 1 1 1 

10,000 A (ref) 0 .00 0 .04 0 0 0 .05 

 
B  0 1 0 1 .33 1 .16 1 

 
C  1 1 1 1 1 1 1 1 

 
D  1 1 1 1 1 1 1 1 

 
E  1 1 1 1 1 1 1 1 

Note. RMSEA = root mean square error of approximation; BRMSEA = Bayesian root mean square error of 

approximation; ppp = posterior predictive p value; p = p-value; ref = reference model. 
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Table 3 

Proportion of rejected models with 12 indicators of the first section, with the 1-factor model as 

reference model, using a cut-off point for the 90% confidence interval and 90% posterior 

probability intervals of the root mean square error of approximation (RMSEA) and Bayesian 

RMSEA (BRMSEA) for the upper limit of .08 and for the lower limit of .05 and of .05 for the 

posterior predictive p value and p-value for the Bayesian confirmatory factor analysis (CFA), with 

diffuse priors, and frequentist CFA 

 
Factor loadings = .5 Factor loadings = .7 

N Model BRMSEA ppp RMSEA p BRMSEA ppp RMSEA p 
50 A (ref) .00 .04 .82 .21 0 .03 .82 .22 

 
B  .00 .04 .84 .22 .00 .05 .85 .23 

 
C  .02 .09 .90 .31 .03 .17 .96 .45 

 
D  .04 .19 .96 .51 .74 .94 1 .99 

 
E  .09 .28 .98 .64 .99 1.00 1 1 

100 A (ref) 0 .02 .25 .10 0 .02 .26 .10 

 
B  0 .02 .30 .13 0 .04 .35 .17 

 
C  0 .10 .56 .31 .01 .33 .86 .65 

 
D  .02 .42 .87 .71 .97 1 1 1 

 
E  .15 .76 .98 .93 1 1 1 1 

250 A (ref) 0 .01 0 .08 0 .01 0 .08 

 
B  0 .03 0 .13 0 .07 .00 .23 

 
C  0 .38 .02 .66 0 .93 .51 .98 

 
D  .01 .97 .73 1.00 1 1 1 1 

 
E  .37 1 1.00 1 1 1 1 1 

500 A (ref) 0 .01 0 .06 0 .00 0 .05 

 
B  0 .07 0 .18 0 .23 .00 .42 

 
C  0 .92 .01 .97 .05 1 .61 1 

 
D  .27 1 .88 1 1 1 1 1 

 
E  .98 1 1 1 1 1 1 1 

1,000 A (ref) 0 .02 0 .06 0 .02 0 .06 

 
B  0 .20 0 .41 0 .63 0 .84 

 
C  0 1 .00 1 .47 1 .92 1 

 
D  .88 1 .99 1 1 1 1 1 

 
E  1 1 1 1 1 1 1 1 

5,000 A (ref) 0 .01 0 .05 0 .01 0 .05 

 
B  0 1 0 1 0 1 0 1 

 
C  0 1 0 1 1 1 1 1 

 
D  1 1 1 1 1 1 1 1 

 
E  1 1 1 1 1 1 1 1 

10,000 A (ref) 0 .00 0 .05 0 .00 0 .05 

 
B  0 1 0 1 0 1 0 1 

 
C  0 1 0 1 1 1 1 1 

 
D  1 1 1 1 1 1 1 1 

 
E  1 1 1 1 1 1 1 1 

Note. RMSEA = root mean square error of approximation; BRMSEA = Bayesian root mean square error of 

approximation; ppp = posterior predictive p value; p = p-value; ref = reference model. 
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Table 4 

Proportion of rejected models of the second section, with the 2-factor model as reference model, 

using a cut-off point for the 90% confidence interval and 90% posterior probability intervals of 

the root mean square error of approximation (RMSEA) and Bayesian RMSEA (BRMSEA) for the 

upper limit of .08 and for the lower limit of .05 and of .05 for the posterior predictive p value and 

p-value for the Bayesian confirmatory factor analysis (CFA), with diffuse, informative, and wrong 

priors, and frequentist CFA 

  Bayesian CFA (priors) Frequentist CFA 
  Diffuse Conservative Wrong - 
N Model BRMSEA ppp BRMSEA ppp BRMSEA ppp RMSEA p 
50 D (Ref) .00 .03 0 .01 0 .11 .82 .21 
 E .67 .90 .45 .90 .93 1 1 .98 
 F1 .00 .03 0 .01 0 .11 .84 .21 
 F2 .03 .12 .00 .10 .02 .40 .94 .45 
100 D (Ref) 0 .01 0 .01 0 .14 .26 .09 
 E .96 1 .94 1 1 1 1 1 
 F1 0 .01 0 .01 0 .15 .30 .11 
 F2 .00 .26 .00 .24 .02 .80 .83 .62 
250 D (Ref) 0 .02 0 .01 0 .38 0 .09 
 E 1 1 1 1 1 1 1 1 
 F1 0 .03 0 .01 0 .46 0 .12 
 F2 0 .91 0 .90 .01 1 .51 .97 
500 D (Ref) 0 .01 0 .01 0 .50 .00 .05 
 E 1 1 1 1 1 1 1 1 
 F1 0 .03 0 .03 0 .64 0 .10 
 F2 .02 1 .02 1 .13 1 .53 1 
1,000 D (Ref) 0 .02 0 .02 0 .30 0 .06 
 E 1 1 1 1 1 1 1 1 
 F1 0 .08 0 .08 0 .61 0 .23 
 F2 .32 1 .29 1 .48 1 .79 1 
5,000 D (Ref) 0 .02 0 .02 0 .04 0 .04 
 E 1 1 1 1 1 1 1 1 
 F1 0 .87 0 .88 0 .95 0 .96 
 F2 1 1 1 1 1 1 1 1 
10,000 D (Ref) 0 .01 0 .00 0 .01 0 .05 
 E 1 1 1 1 1 1 1 1 
 F1 0 1 0 1 0 1 0 1 
 F2 1 1 1 1 1 1 1 1 
Note. RMSEA = root mean square error of approximation; BRMSEA = Bayesian root mean square error of 

approximation; ppp = posterior predictive p value; p = p-value; ref = reference model. 
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Table 5 
Summary of model acceptance, for each model specification and magnitude of the factor loadings, 
indicating if models were commonly accepted (+), rejected (-) or a mixed pattern emerged (0) for 
the conditions with a large sample size (N ≥ 1,000) with a cut-off point for the lower limit of .05 and 
for the upper limit of .08 for the 90% posterior probability intervals of the Bayesian root mean 
square error of approximation (BRMSEA) and 90% confidence interval of the RMSEA and of .05 
for the posterior predictive p value and p-value 
 Bayesian confirmatory factor analysis (CFA)  Frequentist confirmatory factor analysis 

(CFA) 
BRMSEA ppp  RMSEA p-value 

 .5 .7 .5 .7  .5 .7 .5 .7 
Reference model: 1 Factor (Specification A)      
A (ref) + + + +  + + + + 
B + + 0 -  + 0/+a 0 - 
C -/+a - - -  -/+a - - - 
D - - - -  - - - - 
E - - - -  - - - - 
Reference model: 2 Factor (Specification D)      
D (ref)  +  +/0b   +  + 
E  -  -   -  - 
F1  +  0   +  0 

F2  -  -   -  - 
Conclusio
n (N ≥ 
1,000) 

Using the BRMSEA, 
models with no or “small” 
amounts of misspecification 
(e.g. B & F1) were generally 
accepted, whereas models 
with a “moderate” or “large” 
misspecification (e.g. E) 
were mostly rejected, 
irrespective if the reference 
model had one or two 
factors, if sample size 
increased. If factor loadings 
were smaller model 
acceptance became more 
liberal as models with a 
“large” misspecification 
were increasingly accepted. 
There were no noteworthy 
difference between priors 
(for large samples) 

With increasing sample 
sizes the ppp rejects all 
models regardless the 
level of misspecification. 
Only a small proportion 
of models with a “small” 
amount of 
misspecification were 
accepted if the sample 
size was 1,000. These 
models were, however, 
always rejected if the 
sample size was 5,000 or 
10,000. There were no 
noteworthy differences 
between priors (for large 
samples) except that 
some 2-factor reference 
models were rejected if 
the wrong prior 
specification was used. 
This effect diminished, 
however, in the largest 
sample sizes. 

 Using the RMSEA, 
models with no or “small” 
amounts of 
misspecification (e.g. B & 
F1) were generally 
accepted, whereas models 
with a “moderate” or 
“large” misspecification 
(e.g. E) were mostly 
rejected, irrespective if 
the reference model had 
one or two factors, if 
sample size increased. If 
factor loadings were 
smaller model acceptance 
became more liberal as 
models with a “large” 
misspecification were 
increasingly accepted. 

With increasing 
sample sizes the 
χ2-test rejects all 
models 
regardless the 
level of 
misspecification. 
Some models 
with a “small” 
amount of 
misspecification 
were accepted if 
the sample size 
was 1,000. 
These models 
were, however, 
always rejected 
if the sample 
size was 5,000 
or 10,000. 

aModel acceptance differed for the number of indicators: the result for the 6 indicators was provided first, followed by 
the result for the 12 indicators. bModel acceptance differed for the different prior variations: the result for the diffuse 
and informative prior variations was provided first, followed by the result for the wrong prior variation. 
Note. If no superscripts are given no noteworthy differences were found for the different prior variations or the 
number of indicators and a joined summary was given. RMSEA = root mean square error of approximation; 
BRMSEA = Bayesian root mean square error of approximation; ppp = posterior predictive p value; ref = reference 
model.  
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Table 6 

Results of the empirical illustration for the different sample sizes with the 90% confidence 

interval of the root mean square error of approximation (RMSEA) and p-values for the 

frequentist confirmatory factor analysis (CFA) models and 90% posterior probability intervals of 

the Bayesian RMSEA (BRMSEA) and posterior predictive p value for the Bayesian CFA models 

with diffuse and informative priors 

 Bayesian CFA (diffuse priors) Bayesian CFA (informative priors) Frequentist CFA 
N BRMSEA90 ppp BRMSEA90 ppp RMSEA90 p-value 
50 0.000 – 0.206 .15 0.000 – 0.189 .16 0.053 – 0.254 .02 
100 0.000 – 0.114 .40 0.000 – 0.109 .42 0.000 – 0.136 .25 
250 0.000 – 0.065 .45 0.000 – 0.063 .46 0.000 – 0.078 .36 
500 0.000 – 0.055 .31 0.000 – 0.055 .31 0.000 – 0.066 .15 
1,000 0.000 – 0.046 .15 0.000 – 0.046 .15 0.012 – 0.057 .02 
5,000 0.039 – 0.048 .00 0.039 – 0.048 .00 0.038 – 0.055 < .01 
10,000 0.043 – 0.047 .00 0.043 – 0.047 .00 0.039 – 0.051 < .01 
Note. Bold BRMSEA and RMSEA intervals have a lower limit below 0.05 and an upper limit below 0.08; Bold p-

values and posterior predictive p values are above .05. RMSEA = root mean square error of approximation; BRMSEA 

= Bayesian root mean square error of approximation; ppp = posterior predictive p value. 
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Figure 1.  The different specifications for the population factor models used to generate the 

population covariance matrices for each condition. Factor loadings (λi = .3, .5, or .7; λc = .07, .35) 

and number of indicators (6 or 12) varied between the conditions. Residuals (θ) were computed on 

the basis of the factor loadings (1 - λ2). Intercepts and factor means are not displayed as they were 

estimated to be zero in all models. Model A through C were only used in the first section and 

model F1 & F2 only in the second section. Model A was the reference model in the first section 

and Model D was the reference model in the second section. 

 

Figure 2. Mean values of the 500 replications for the 90% posterior probability interval (PPI) of 

the Bayesian root mean square error of approximation (BRMSEA) and the posterior predictive p 

value (ppp) for the Bayesian confirmatory factor analysis (CFA) models, both with informative 

and diffuse priors, and for the 90% confidence interval (CI) RMSEA and p-value for the 

frequentist CFA models of the first section, with the 1-factor model as reference (ref) model, for 

each sample size (as ordinal variable) and specification condition in which the magnitude of the 

factor loadings was .5. Cut-off values for the BRMSEA and RMSEA (.05 for the lower limit and 

.08 for the upper limit) and for the posterior predictive p value and p-value (.05) are indicated with 

the dashed lines. Values within these cut-off points have (blue) circles, those outside (red) squares 

 

Figure 3. Mean values of the 500 replications for the 90% posterior probability interval (PPI) of 

the Bayesian root mean square error of approximation (BRMSEA) and the posterior predictive p 

value (ppp) for the Bayesian confirmatory factor analysis (CFA) models, both with informative 

and diffuse priors, and for the 90% confidence interval (CI) RMSEA and p-value for the 

frequentist CFA models of the first section, with the 1-factor model as reference (ref) model, for 

each sample size (as ordinal variable) and specification condition in which the magnitude of the 

factor loadings was .7. Cut-off values for the BRMSEA and RMSEA (.05 for the lower limit and 

.08 for the upper limit) and for the posterior predictive p value and p-value (.05) are indicated with 

the dashed lines. Values within these cut-off points have (blue) circles, those outside (red) squares 

 

Figure 4. Mean values of the 500 replications for the 90% posterior probability interval (PPI) of 

the Bayesian root mean square error of approximation (BRMSEA) and the posterior predictive p 

value (ppp) for the Bayesian structural equation modelling (BSEM) models, both with informative, 

diffuse, and wrong priors, and for the 90% confidence interval (CI) RMSEA and p-value for the 
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frequentist CFA models of the second section, with the 2-factor model as reference (ref) model, 

for each sample size (as ordinal variable) and specification condition. Cut-off values for the 

BRMSEA and RMSEA (.05 for the lower limit and .08 for the upper limit) and for the posterior 

predictive p value and p-value (.05) are indicated with the dashed lines. Values within these cut-

off points have (blue) circles, those outside (red) squares 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplementary Material A 

BRMSEA syntax for R 

To retrieve the BRMSEA the observed and replicated chi-square should be saved by Mplus, this is 

established by adding the following to the input: 

PLOT: 

  Type = Plot2 ; 

This saves the parameters estimates into a gh5-file which are used by Mplus to deploy the plots. 

This file can, however, also be used to extract several parameters. To extract the parameters R can 

be used. The following packages should be installed and loaded: 

# # To extract the number of parameters and observations 

library(MplusAutomation) 

# # As helper function 

library(stringr) 

# # To extract gh5 files 

library(rhdf5) 

# # To extract the gh5 files 

source("http://www.statmodel.com/mplus-R/mplus.R") 

The latter is no package but is a source offered by Mplus to smooth the extraction of parameters 

estimates. These packages are used in the function to compute the BRMSEA. This function should 

only be used for identified models with a proper convergence. The function contains the following 

arguments: 
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• obs:  A vector with the observed 𝜒I for each iteration 

• rep  A vector with the replicated 𝜒I for each iteration 

• nvar  Number of observed variables (positive integer) 

• pD  Effective number of estimated parameters (pD) 

• N  Sample size (N) 

• ms  Whether the mean structure is estimated (default = TRUE; ms included) 

• cil  Lower bound, proportion, of the posterior probability interval (default = .05; 5%) 

• ciu  Upper bound, proportion, of the posterior probability interval (default = .95; 95%) 

• allout  Whether the BRMSEA of each iteration should be provide or only the posterior 

probability interval  (default = FALSE) 

• Min1  Whether to subtract 1 from the sample size in the equation (default = TRUE; yes) 

• Ngr Number of groups (default = 1; one group; validity of BRMSEA for multiple 

groups is not assessed, based on Steiger [1998; doi:10.1080/10705519809540115]) 

It is important that obs and rep have the same order in respect to the iterations they reflect. The 

arguments, nvar, pD, and N, should only contain a single element. These arguments are used in 

the following function to compute the BRMSEA: 

BayesRmsea <- 

  function(obs, rep, nvar, pD, N, ms = TRUE, cil = .05, 

           ciu = .95, allout = FALSE, Min1 = TRUE, Ngr = 1){ 

    # # Compute number of parameters 

    if(ms) p <- (((nvar * (nvar + 1)) / 2) + nvar) 

    if(!ms) p <- (((nvar * (nvar + 1))/ 2) + 0) 
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    p <- p * Ngr 

    # # Substract parameters and estimated parameters 

    dif.ppD <- p - pD 

    nonc <- ( ( obs-rep ) - dif.ppD ) 

    # # Correct if numerator is smaller than zero 

    nonc[nonc < 0] <- 0 

    # # Compute BRMSEA (with or without the -1 correction)  

    if(Min1)  BRMSEA <- sqrt(nonc / (dif.ppD * (N -1)))*sqrt(Ngr) 

    if(!Min1) BRMSEA <- sqrt(nonc / (dif.ppD * N ))*sqrt(Ngr) 

    # # Compute posterior probability intervals 

    BRMSEA_ci <- quantile(BRMSEA, probs = c(cil, ciu)) 

    # # Save posterior probability interval or all BRMSEA 

    if(allout)  out <- BRMSEA 

    if(!allout) out <- BRMSEA_ci 

    return(out) 

  } 

Depending on the argument allout this function returns either the posterior probability 

interval of the BRMSEA, or the BRMSEA for each iteration. 

To extract the observed and replicated χ2, effective number of parameters (pD), and sample 

size (N) from Mplus the following code can be used: 

# # Retrieve observed and replicated chi-square 
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file_sel <- "Chi-square values" 

file <- "ModelName.gh5" 

Obs <- mplus.get.bayesian.predictive.observed(file, file_sel) 

Rep <- mplus.get.bayesian.predictive.replicated(file, file_sel) 

# # Retrieve pD and N 

sum <- extractModelSummaries(gsub("gh5", "out", file)) 

pD  <- sum$pD 

N   <- sum$Observations 

It has to be noted that Mplus and the default function of R extract quantiles in a slightly 

different way. Using the credibility interval as given by Mplus to compute the 95% posterior 

probability interval of the BRMSEA would therefore result in a slightly different outcome (often a 

little wider). 
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Supplementary Material B 

Syntax for simulated models 

This Appendix provides the syntax that is used to simulate and estimate the models. For an 

automatization of this syntax see: http://git.io/vnInn. For more information about the syntax, 

defaults, and model building see the manual of Mplus. As an example, only the condition with 6 

indicators in which the sample size is 50 and factor loadings are .5 is given. The other condition 

can be extracted from this example by changing the number of observations (sample size) or the 

parameters of the models such as the factor loadings and number of indicators. 

Model Simulation 

The start for each model specification was the same. 

TITLE: 

  Model; [Specification] 

  Sample Size; 50 

  Loadings; 0.5 

  Indicators; 6 

MONTECARLO: 

  Names = y1-y6 ; 

  Nobs = 50 ; 

  Nreps = 500 ; 

  Save = file_*.txt ; 

  Repsave = 1-500 ; 

  Results = results.txt ; 
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ANALYSIS: 

  Processors = 4 ; 

  Model population: 

In which [Specification] included the model specification (e.g. A or B). All remarks in the TITLE 

are, however, purely for documentation purposes. Names provide names for the variables (y1 

through y6 or y12 depending on the number of indicators), Nobs are the number of observations 

(which are changed according to the condition), and Nreps are the number of replications. Save 

provides the file name for the simulated data set in which the * is replaced by the replication 

number (defined by Repsave). Results provides the file name in which the output of the 

simulation is stored. Processors is set to four to increase the computational speed. Next the Model 

population: statement is followed by the specification of the model. 

For the conditions which 6 indicators specification for model A was: 

    F1 by y1@0.5 y2@0.5 y3@0.5 y4@0.5 y5@0.5 y6@0.5 ;  

    y1-y6@0.75 ;  

    F1@1 ; 

The specification for model B was: 

    F1 by y1@0.5 y2@0.5 y3@0.5 y4@0.5 y5@0.5 y6@0.5 ;  

    y1-y6@0.75 ;  

    F1@1 ;  

    y1 with y2@0.1 ; 

The specification for model C was: 
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    F1 by y1@0.5 y2@0.5 y3@0.5 y4@0.5 y5@0.5 y6@0.5 ;  

    y1-y6@0.75 ;  

    F1@1 ;  

    y1 y3 y5 pwith y2@0.1 y4@0.1 y6@0.1 ;  

The specification for model D was: 

    F1 by y1@0.5 y2@0.5 y3@0.5 ;  

    F2 by y4@0.5 y5@0.5 y6@0.5 ;  

    y1-y6@0.75 ;  

    F1-F2@1 ;  

    F1 with F2@0.5 ; 

The specification for model E was: 

    F1 by y1@0.5 y2@0.5 ;  

    F2 by y3@0.5 y4@0.5 ;  

    F3 by y5@0.5 y6@0.5 ;  

    y1-y6@0.75 ;  

    F1-F3@1 ;  

    F1-F3 with F1-F3 @0.25 ; 

Each of the model parameters is changed in accordance to the factor loadings. The intercept of 

each indicator is 0 by default, as is the mean of each factor. Models with 12 indicators had the 

same structure as only the number of indicators for each factor or factors differed. 

The specification for model F1 was: 
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    F1 by y1@0.7 y2@0.7 y3@0.7 y4@0.7  y5@0.7  y6@0.7 ;  

    F2 by y7@0.7 y8@0.7 y9@0.7 y10@0.7 y11@0.7 y12@0.7 ;  

    y1-y12@0.51 ;  

    F1-F2@1 ;  

    F1 with F2@0.5 ; 

    F1 by y7@0.07 ; 

    F2 by y6@0.07 ; 

The specification for model F2 was: 

    F1 by y1@0.7 y2@0.7 y3@0.7 y4@0.7  y5@0.7  y6@0.7 ;  

    F2 by y7@0.7 y8@0.7 y9@0.7 y10@0.7 y11@0.7 y12@0.7 ;  

    y1-y12@0.51 ;  

    F1-F2@1 ;  

    F1 with F2@0.5 ; 

    F1 by y7@0.35 ; 

    F2 by y6@0.35 ; 

Model Estimation 

In the first section each model was analyzed using the same 1-factor model for each three 

estimators. For the two Bayesian models the first part of the syntax is the same: 

TITLE:  

  Model; [Specification]  

  Sample Size; 50  
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  Loadings; 0.5  

  Indicators; 6 

DATA: 

  File = file_[number].txt ; 

VARIABLE:  

  Names = y1-y6 ; 

ANALYSIS:  

  Estimator = BAYES ;  

  Processors = 8 ;  

  Chains = 8 ;  

  Biterations = 20000 (5000) ;  

  Bconvergence = .01 ; 

MODEL:  

  F1 by y1-y6* (p1-p6) ;  

  [y1-y6*] (t1-t6) ;  

  F1@1 ; 

PLOT:  

  Type = Plot2 ; 

The [number] is replaced by the replication number (1-500). Names define the names and number 

of variables. The names are the same as in the simulation (which is not a necessity). Estimator is 

set to Bayes, Chains and Processors are both set to 8 to increase the computational speed. As 

introduced in the method section of the manuscript the default values of the Bconvergence and 
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Biterations are adapted to increase the likelihood of a model that has good convergence. The 

Bconvergence is set to 0.01 which results in PSR values that are at least below 1.02. The minimal 

number of iterations are set to 5000 and the maximum to 20000. Each model is specified 

(estimated) as the specification A in the first section. The factor loadings are all freely estimated, 

through *, and identification is achieved by setting the factor variance to 1, through @1. In a 

default model, specification of the indicator intercepts is not necessary. If a prior is introduced, 

however, it is required to specify the associated parameters in the model. These parameters are 

labelled ((t1-t6)), as are the factor loadings ((p1-p6)), to be referred to when the priors are 

specified. The factor mean is estimated by default at 0. The Plot2, resulting in a gh5-file, was 

added to be able to extract the replicated and observed chi-square (see Appendix A). For the 

models with 12 indicators, the number of variables was changed accordingly (y1-y12 instead of 

y1-y6) also for the parameter labels. 

The model with the conservative priors had the following additional lines in the model 

statement: 

  Model priors:  

    p1-p6 ~ N(0.5, 0.05) ;  

    t1-t6 ~ N(0, 0.05) ; 

The N indicates that the prior is normally distributed, the first number indicates the mean and the 

second the variance of this (normal) prior distribution. The 0.5 is changed in accordance to the 

factor loading, and the variance in accordance with the prior variation (e.g. 0.05). 

The frequentist CFA model was estimated using the following syntax: 

TITLE:  
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  Model; horrible  

  Sample Size; 50  

  Loadings; 0.5  

  Indicators; 6 

DATA: 

  File = file_[number].txt ; 

VARIABLE:  

  Names = y1-y6 ; 

ANALYSIS:  

  Estimator = ML ;  

  Processors = 8 ; 

MODEL:  

  F1 by y1-y6* (p1-p6) ;  

  [y1-y6*] (t1-t6) ;  

  F1@1 ; 

In the second section the procedure was in general the same. The most important difference is the 

model specification: 

MODEL:  

  F1 by y1-y6*  (p1-p6)  ;  

  F2 by y7-y12* (p7-p12) ; 

  [y1-y12*] (t1-t12) ;  
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  F1@1 ; 

  F2@1 ; 

  F1 with F2 (F1corF2) ; 

The other difference was the prior specification of the covariance in the conservative prior 

variation:  

  Model priors:  

    p1-p12  ~ N(0.7, 0.05) ;  

    t1-t12  ~ N(0, 0.05) ; 

    F1corF2 ~ N(0.5, 0.05) ; 

And in the wrong prior variation: 

  Model priors:  

    p1-p12  ~ N(0.9, 0.005) ;  

    F1corF2 ~ N(0.3, 0.005) ; 
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Supplementary Material C 

Table C1 
Proportion of converged models using Bayesian confirmatory factor analysis (CFA), with diffuse 
and informative priors, and frequentist CFA for each condition of the first section, with the 1-factor 
model as reference model, for the different magnitude of factor loadings 
  Indicators = 6 Indicators = 12 

  Diffuse 
Bayesian 

Informative 
Bayesian 

Frequentist 
CFA 

Diffuse 
Bayesian 

Informative 
Bayesian 

Frequentist 
CFA N Mod

el 
.5 .7 .5 .7 .5 .7 .5 .7 .5 .7 .5 .7 

50  A 
(ref) 

1 1 1 1 .99 1 1 1 1 1 1 1 

  B  1 1 1 1 .99 1 1 1 1 1 1 1 

  C  1 1 1 1 1.00 1 1 1 1 1 1 1 

  D  1 .99 1 1 .93 1 1 1.00 1 1 1.00 1 

  E  1 .97 1 1 .73 .87 1 .96 1 1 .97 1 
100  A 

(ref)  
1 1 1 1 1 1 1 1 1 1 1 1 

  B  1 1 1 1 1 1 1 1 1 1 1 1 

  C  1 1 1 1 1 1 1 1 1 1 1 1 

  D  1 .99 1 1.00 1.00 1 1 1.00 1 1 1 1 

  E  1.00 .94 1 1.00 .83 .96 1.00 .93 1 1 1 1 
250  A 

(ref)  
1 1 1 1 1 1 1 1 1 1 1 1 

  B  1 1 1 1 1 1 1 1 1 1 1 1 

  C  1 1 1 1 1 1 1 1 1 1 1 1 

  D  1 1.00 1 1 1 1 1 1 1 1 1 1 

  E  .98 .89 1 .99 .94 1.00 1.00 .96 1 .99 1 1 
500  A 

(ref)  
1 1 1 1 1 1 1 1 1 1 1 1 

  B  1 1 1 1 1 1 1 1 1 1 1 1 

  C  1 1 1 1 1 1 1 1 1 1 1 1 

  D  1 1.00 1 1 1 1 1 1 1 1 1 1 

  E  .98 .88 1.00 .95 .99 1 1.00 .95 1 .99 1 1 
1,000  A 

(ref)  
1 1 1 1 1 1 1 1 1 1 1 1 

  B  1 1 1 1 1 1 1 1 1 1 1 1 

  C  1 1 1 1 1 1 1 1 1 1 1 1 

  D  1 1.00 1 1.00 1 1 1 1 1 1 1 1 

  E  .99 .87 1.00 .92 1.00 1 1 .95 1 .98 1 1 
5,000  A 

(ref)  
1 1 1 1 1 1 1 1 1 1 1 1 

  B  1 1 1 1 1 1 1 1 1 1 1 1 

  C  1 1 1 1 1 1 1 1 1 1 1 1 

  D  1 1 1 1 1 1 1 1 1 1 1 1 

  E  1 .86 1 .86 1 1 1 .99 1 .99 1 1 
10,000  A 

(ref)  
1 1 1 1 1 1 1 1 1 1 1 1 

  B  1 1 1 1 1 1 1 1 1 1 1 1 

  C  1 1 1 1 1 1 1 1 1 1 1 1 

  D  1 1 1 1 1 1 1 1 1 1 1 1 

  E  1 .85 1 .87 1 1.00 1 1 1 1.00 1 1 
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Table C2 

Proportion of converged models using Bayesian confirmatory factor analysis (CFA), with diffuse, 

informative, and wrong priors, and frequentist CFA for each condition of the second section, with 

the 2-factor model as reference model 

  Bayesian CFA (priors) Frequentist CFA 
N Model Diffuse Informative Wrong - 
50 D (Reference) 1 1.00 1 1 
 E .99 1 1 1 
 F1 1 1.00 1 1 
 F2 1 .96 1 1 
100 D (Reference) 1 1 1 1 
 E 1 1 1 1 
 F1 1 1 1 1 
 F2 1 1.00 1 1 
250 D (Reference) 1 1 1 1 
 E 1 1 1 1 
 F1 1 1 1 1 
 F2 1 1 1 1 
500 D (Reference) 1 1 1 1 
 E 1 1 1 1 
 F1 1 1 1 1 
 F2 1 1 1 1 
1,000 D (Reference) 1 1 1 1 
 E 1 1 1 1 
 F1 1 1 1 1 
 F2 1 1 1 1 
5,000 D (Reference) 1 1 1 1 
 E 1 1 1 1 
 F1 1 1 1 1 
 F2 1 1 1 1 
10,000 D (Reference) 1 1 1 1 
 E 1 1 1 1 
 F1 1 1 1 1 
 F2 1 1 1 1 
 

 


