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The GRoLTS-Checklist: Guidelines for Reporting on
Latent Trajectory Studies
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Estimating models within the mixture model framework, like latent growth mixture modeling
(LGMM) or latent class growth analysis (LCGA), involves making various decisions through-
out the estimation process. This has led to a wide variety in how results of latent trajectory
analysis are reported. To overcome this issue, using a 4-round Delphi study, we developed
Guidelines for Reporting on Latent Trajectory Studies (GRoLTS). The purpose of GRoLTS is
to present criteria that should be included when reporting the results of latent trajectory
analysis across research fields. We have gone through a systematic process to identify key
components that, according to a panel of experts, are necessary when reporting results for
trajectory studies. We applied GRoLTS to 38 papers where LGMM or LCGA was used to
study trajectories of posttraumatic stress after a traumatic event.

Keywords: latent classes, LCGA, LGMM, mixture modeling, SEM

Methods to estimate latent trajectories1 are becoming ever more
popular across social, behavioral, and biomedical research areas.

Estimating models within the mixture model framework
involves making various decisions throughout the estimation
process. Such decisions can affect the results, even leading to
different conclusions. Despite latent trajectory analysis becom-
ing very popular—currently being the dominant tool to analyze
longitudinal data in many different fields—there is no standard
for how to report results for latent trajectorymodels. This has led
to a high variety of how results of latent trajectory analysis are
reported in papers. Inadequate or incomplete reporting of the
results for latent trajectory analysis hampers interpretation and
critical appraisal of results, as well as comparison of results
between studies.

© 2017 Rens van de Schoot, Marit Sijbrandij, Sonja D. Winter, Sarah
Depaoli, and Jeroen K. Vermunt. Published with license by Taylor & Francis.

This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Correspondence should be addressed to Rens van de Schoot, Department
of Methods and Statistics, Utrecht University, P.O. Box 80.140, Utrecht, TC
3508, The Netherlands. E-mail: a.g.j.vandeschoot@uu.nl

Color versions of one or more of the figures in the article can be found
online at www.tandfonline.com/hsem.

1With latent trajectory analysis, we refer to person-centered techniques
to estimate membership of unobserved subgroups of individuals developing
over time (e.g., Muthén & Muthén, 2000a). To estimate trajectory member-
ship, a conventional latent growth model (e.g., Raudenbush & Bryk, 2002)
is combined with a mixture component (e.g., Vermunt, 2010b). The basic
idea of latent growth modeling is the assumption that all individuals are
drawn from one population. When combined with mixture modeling it is

assumed that growth parameters (i.e., intercept, slope, etc.) vary across a
number of prespecified, unobserved subpopulations. This is accomplished
using categorical latent variables, which allow for groups of individual
growth trajectories and results in separate latent growth models for each
(unobserved) group, each with its unique set of growth parameters.
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This article describes Guidelines for Reporting on Latent
Trajectory Studies (GRoLTS). The ultimate goal of GRoLTS is
to enhance the uniformity of reporting latent trajectory studies
so that the results presented are fully transparent (i.e., are of
high quality) and can be used for comparisons, replications,
systematic reviews, and meta-analyses. In what follows, we
first describe the development of GRoLTS; we have gone
through a systematic process, using a four-round Delphi
study, to identify key components that, according to a panel
of experts, are necessary when reporting results for trajectory
studies. Next, we provide a detailed description of each item.
Finally, we present our experiences with administering
GRoLTS to a set of 38 studies applying latent trajectory
analyses to assess change in posttraumatic stress symptoms
(PTSS) after traumatic experience. Additional information is
available on the Open Science Framework (see https://osf.io/
vw3t7/): (a) all the details for the Delphi study; (b) additional
information for some of the items that can be used for teaching
purposes; and (c) the data set with the screening of the 38
PTSS papers.

THE DEVELOPMENT OF GROLTS

The development process of GRoLTS involved the follow-
ing stages (cf. Streiner, Norman, & Cairney, 2014): (a)
preliminary conceptual decisions; (b) item generation; (c)
assessment of face validity; (d) field trials to access consis-
tency and construct validity; and (e) the creation of the final,
refined checklist. At the start of the project, we decided that
GRoLTS would need to meet the following basic
requirements:

● Be targeted at papers where latent trajectory analyses
have been used in an exploratory way to answer a
substantive research question.

● Summarize the requirements of what to report on latent
trajectory analyses.

● Allow for consistent and reliable use for researchers
with different backgrounds.

● Be short and simple to complete, but at the same time
it should include all of the aspects needed to guarantee
replicability and transparency of findings.

During the development phase, face validity of the gener-
ated item set was assessed by a three-round Delphi procedure
and a fourth round with field trials. We used the Delphi
procedure to obtain consensus among experts on which cri-
teria should be included in GRoLTS, as well as the phrasing
of the items. In total, 27 experts (see Acknowledgments for a
list of experts) were invited to take part in the expert panel
and were provided the aims of GRoLTS and its desired
features. The specific details of each step, including all earlier
versions of the GRoLTS are provided on the Open Science
Framework (https://osf.io/vw3t7/).

USER GUIDE TO THE GROLTS

The GRoLTS is a list of 16 items (some with subitems); see
Table 1. Each item should be scored 0 (not reported) or 1
(reported). The use of GRoLTS is recommended for:

● Researchers preparing to submit a manuscript.
● Editors, reviewers, and grant panelists to check
whether all essential aspects are reported.

● Lecturers teaching their students which topics are of
importance.

In what follows, we explain each of the items and pro-
vide an overview of the discussions in the literature (if there
are any) especially for the more complicated items. More
detailed information for Items 1, 2, 7, and 14 can be found
on the Open Science Framework (https://osf.io/vw3t7/).

Item 1: Is the Metric of Time Used in the Statistical
Model Reported?

The coding of time in any type of growth model has impor-
tant implications for the interpretation of the results. As was
shown by, for example, Eggleston, Laub, and Sampson
(2004), the number of latent trajectories and their shapes
appeared not to be robust to the length of the follow-up
period specified; longer ranges result in more groups.
Moreover, Piquero (2008) found in his systematic review
of latent growth mixture modeling (LGMM) and latent class
growth analysis (LCGA) papers applied to delinquency data
that the spacing in between time points also affects the
number of trajectories found. Therefore, it is of importance
that the metric of time is not only transparently reported, but
also that it is correctly specified. The fit of the model or the
significance of the growth parameter estimates should never
be used to determine the specification of the metric of time.
Rather, the metric of time should be decided on prior to
running the analyses, and it is completely determined by the
research design. For a more in-depth discussion about the
metric of time we refer to the online materials that can be
found on the Open Science Framework (https://osf.io/
vw3t7/), and to Biesanz, Deeb-Sossa, Papadakis, Bollen,
and Curran (2004) or Duncan, Duncan, and Strycker (2013).

Item 2: Is Information Presented About the Mean and
Variance of Time Within a Wave?

In longitudinal studies, it is inevitable that there will be
some variation across individuals’ time intervals due to
logistical reasons of data collection. This variation in assess-
ment is called time-unstructured data, or within-wave varia-
bility. The counterpart is a time-structured study, where all
individuals are assessed at exactly the same time intervals.
Most longitudinal data are time-unstructured, at least to
some degree. That is, not all participants are assessed at
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exactly the same time; see Palardy and Vermunt (2010) for
an application. However, such data are often analyzed as if
they were time-structured. Ignoring time-unstructuredness
can lead to serious substantive misinterpretations. Singer
and Willett (2003, chap. 5) found that the linear slope was
overestimated when using the planned age instead of the
actual age, as were the variances of the intercept and linear
slope. This has been replicated by Mehta and West (2000),
Hertzog and Nesselroade (2003), and in several simulation
studies (see, e.g., Aydin, Leite, & Algina, 2014; Coulombe,
Selig, & Delaney, 2016). We suggest including a timestamp
in the data set for each assessment that notes the exact time
in between observations. This way, the degree of time
variance can be computed and reported in the methods
section. Thus, random factor loadings could be used with
individually varying times of observations instead of fixed
factor loadings (see Coulombe et al., 2016 for more details).
See for a more detailed explanation and some graphical
illustrations the online materials that can be found on the
Open Science Framework (https://osf.io/vw3t7/).

Item 3a: Is the Missing Data Mechanism Reported?

Most longitudinal studies are plagued with missing data, drop-
out of participants, or both. When describing missing data and
dropout, the missing data mechanism should be reported first.
Three types of mechanisms can be distinguished (Schafer &

Graham, 2002): (a) missing completely at random (MCAR),
which means that all missing data occurred independently of all
observed and nonobserved variables; (b) missing at random
(MAR), which means that the missing data might depend on
observed variables but do not depend on unobserved variables;
and (c) missing not at random (MNAR), which means that
attrition is related to unobserved variables. We can never
know whether we are in a MAR or an NMAR situation (i.e.,
this cannot be tested), and one can only do as much as they can
to ensure the missing data fall under the MAR assumption.
Statistical models like LGMM/LCGA assume the situation of
MAR. As long as attrition is not systematic in a specific way,
MAR is quite realistic with longitudinal data because we already
have several measurements for all persons (and missingness is
assumed to be random given a person’s score on these observed
measurements).

Item 3b: Is a Description Provided of What Variables
Are Related to Attrition or Missing Data?

As shown by Asendorpf, van de Schoot, Denissen, and
Hutteman (2014), even small and nonsignificant selective drop-
out effects fromwave towave can accumulate over the course of
a longitudinal study such that the results become increasingly
biased (see also Rubin & Little, 2002). Therefore, researchers
should compare individuals who have dropped out to indivi-
duals who completed the study on relevant characteristics. The

TABLE 1
Final List of Items of the Guidelines for Reporting on Latent Trajectory Studies (GRoLTS) Checklist: Guidelines for Reporting on

Latent Trajectory Studies

Checklist Item Reported?

1. Is the metric of time used in the statistical model reported? Yes/No
2. Is information presented about the mean and variance of time within a wave? Yes/No
3a. Is the missing data mechanism reported? Yes/No
3b. Is a description provided of what variables are related to attrition/missing data? Yes/No
3c. Is a description provided of how missing data in the analyses were dealt with? Yes/No
4. Is information about the distribution of the observed variables included? Yes/No
5. Is the software mentioned? Yes/No
6a. Are alternative specifications of within-class heterogeneity considered (e.g., LGCA vs. LGMM) and clearly documented? If not, was

sufficient justification provided as to eliminate certain specifications from consideration?
Yes/No

6b. Are alternative specifications of the between-class differences in variance–covariance matrix structure considered and clearly documented? If
not, was sufficient justification provided as to eliminate certain specifications from consideration?

Yes/No

7. Are alternative shape/functional forms of the trajectories described? Yes/No
8. If covariates have been used, can analyses still be replicated? Yes/No
9. Is information reported about the number of random start values and final iterations included? Yes/No
10. Are the model comparison (and selection) tools described from a statistical perspective? Yes/No
11. Are the total number of fitted models reported, including a one-class solution? Yes/No
12. Are the number of cases per class reported for each model (absolute sample size, or proportion)? Yes/No
13. If classification of cases in a trajectory is the goal, is entropy reported? Yes/No
14a. Is a plot included with the estimated mean trajectories of the final solution? Yes/No
14b. Are plots included with the estimated mean trajectories for each model? Yes/No
14c. Is a plot included of the combination of estimated means of the final model and the observed individual trajectories split out for each latent

class?
Yes/No

15. Are characteristics of the final class solution numerically described (i.e., means, SD/SE, n, CI, etc.)? Yes/No
16. Are the syntax files available (either in the appendix, supplementary materials, or from the authors)? Yes/No

Note. LGCA = latent class growth analysis; LGMM = latent growth mixture modeling.

THE GROLTS-CHECKLIST 453

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 1

1:
43

 2
1 

Se
pt

em
be

r 
20

17
 

https://osf.io/vw3t7/


variables related to attrition, also called auxiliary variables, can
then be included as either covariates in the model (and fit under
MAR) or used in the multiple imputation (MI) model. The
advantage of MI is that one can separate the missing data
treatment from the model of interest.

Item 3c: Is a Description Provided for How Missing
Data Were Handled in the Analyses?

The way missing data are dealt with in the analyses is the
third thing to report about missing data. See, among many
other papers, Peeters, Zondervan-Zwijnenburg, Vink, and
van de Schoot (2015) for a comparison of different imputa-
tion methods. Currently, a rather general and flexible
method for dealing with missing data is to implement MI
using chained equations, also called predictive mean match-
ing (Van Buuren & oudshoorn, 2005; see Pietrzak et al.,
2014, for an application to LGMM data).

Item 4: Is Information About the Distribution of the
Observed Variables Included?

The dependent variables in latent trajectory analyses can
take different forms. Often it is just assumed that the vari-
ables are measured on a continuous scale and are normally
distributed within classes. However, this is not always the
case. It could be the case that the dependent variables are
not measured on a continuous scale, but are categorical
(e.g., a Likert-type scale with five answering categories),
count data (e.g., counting the number of symptoms someone
has), or zero-inflated (e.g., 80–90% of the participants have
a zero score). As stated by Vermunt (2011), one should be
critical with regard to the within-cluster normal distribution
assumption. Vermunt advised against using a mixture model
for continuous responses, but instead to use a mixture model
for discrete responses assuming multinomial within-cluster
distributions (opposed to normal). Bauer and Curran (2003a,
2003b, 2004) showed that when assumptions about the
distribution of the variables are violated (i.e., when the
actual outcome distribution is nonnormal), then a model
with multiple trajectory groups could be preferred even
though only one group was actually present (see also
Hoeksma & Kelderman, 2006). The latent trajectory frame-
work can easily deal with these types of variables by simply
“telling” the software the scale of the outcomes and over-
extraction of latent classes can be avoided. Another option
is to use latent variables (for an application in LGMM, see
Nash et al., 2014), where the measurement structure is taken
into account. That is, the individual items are used instead
of sum scores. If latent variables are to be meaningfully
implemented in the model, then the measurement structure
(s) of the latent factor(s) and the survey items should be
stable over time; that is, the measurement structure needs to
be “time-invariant.” This is called measurement invariance
(see, e.g., van de Schoot, Schmidt, De Beuckelaer, Lek, &

Zondervan-Zwijnenburg, 2015), which is a crucial assump-
tion to check because it can have a large impact on results
and it does not always hold (see, e.g., Lommen, van de
Schoot, & Engelhard, 2014).

Item 5: Is the Software Mentioned?

There are several different software packages that can be used to
estimate latent trajectory studies: LatentGold (Vermunt &
Magidson, 2016), Mplus (Muthén & Muthén, 2013), SAS
Proc Traj (Jones, Nagin, & Roeder, 2001), Stata GLLAMM
(Rabe-Hesketh, Skrondal, & Pickles, 2004), the R package
LCMM (Proust-Lima, Philipps, & Liquet, 2015), the R package
OpenMx (Boker et al., 2011), and so on. All of these software
packages have different ways of how the default model is
specified. For example, in Mplus the default setting is for
covariances and (residual) variances to be constrained across
classes. In contrast, this is not the case in LatentGold, which
uses posterior-mode-estimation using priors for the residual
variances to prevent these from becoming zero. For replicability
purposes, it is of utmost importance to provide information
about which software has been used, as well as the version
(because the algorithms under the hood might have been
adjusted in version updates). In the next item, we discuss the
specification of the variance–covariance matrix in more detail.

Item 6a: Are Alternative Specifications of Within-Class
Heterogeneity Considered (EG LGCA vs. LGMM) and
Clearly Documented?

In setting up the latent trajectorymodel, there are many choices
to be made for how exactly the model can be specified. The
first method deals with within-class heterogeneity, which is in
reference to the variance around the growth parameters within
the latent classes. There are two types of latent growth models
that account for unobserved groups. If variance around the
growth parameters is estimated within a latent trajectory, then
this modeling flexibility is called LGMM (Muthén, 2001,
2003, 2006; Muthén & Muthén, 2000; Muthén & Shedden,
1999). If all individual growth trajectories within a class are
assumed to be homogeneous, and the variance and covariance
estimates for the growth factors within each class are assumed
to be fixed to zero, then this is called LCGA (Nagin, 1999,
2005; Nagin & Land, 1993; Nagin & Tremblay, 2001). The
difference between LGMM and LCGA is nicely summarized
by Croudace, Jarvelin, Wadsworth, and Jones (2003),
Erosheva, Matsueda, and Telesca (2014), Feldman, Masyn,
and Conger (2009), Jung and Wickrama (2008), Kreuter and
Muthén (2008), or Twisk and Hoekstra (2012).

Nagin (1999; see also Nagin & Land, 1993) took a theore-
tical approach and introduced two conceptualizations of latent
trajectory models: (a) as approximations of a continuous but
unknown distribution of population heterogeneity, or (b) as
concrete trajectories that can be treated as substantively impor-
tant entities. In this latter approach the trajectories are given
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descriptive names, and discussed as distinct entities. Most
researchers take the latter approach, as was found in a systema-
tic review by Erosheva et al. (2014, pp. 325–326). However,
these authors also found that true discovery of distinct groups
of trajectories was relatively rare. As one expert in our study
noted: “I have yet to encounter a developmental theory so
well-articulated that it would dictate, a priori, the parameter-
ization of the within-class var/cov structure for the growth
factors.” Twisk and Hoekstra (2012) argued that the choice
for one method is based on pragmatic arguments; namely,
LCGA is often preferred because of computation difficulties
with LGMM. The latter method is more flexible, because it
takes the earlier mentioned heterogeneity regarding the varia-
tion within a class into account, but a price has to be paid for
this flexibility: It is more computationally demanding, often
leads to convergence issues, and needs larger samples. The
discussion about which parameterization to use is heavily
debated in the literature; see, for example, the discussion in
the journal Infant Child Development (Connell & Frye, 2006a,
2006b; Hoeksma & Kelderman, 2006; Muthén, 2006). In this
article, we do not take a stand in this discussion. We only stress
that the selection of the final model should be discussed in the
paper, and ideally both models should be fitted to the data and
compared. We make this recommendation because substantive
results can vary depending on the model specification imple-
mented, and it is important to examine each method to under-
stand the impact on final model interpretations.

Item 6b: Are Alternative Specifications of the Between-
Class Differences in Variance–Covariance Matrix
Structure Considered and Clearly Documented?

In addition to the differences between LGCA and LGMM, a
second issue surrounds constraining (vs. estimating freely in
different classes) the error structures. This issue interacts with
the across-class heterogeneity (vs. homogeneity) of growth fac-
tors’ variance–covariance matrix. That is, are the residual var-
iances and the variance–covariance matrix fixed across latent
classes or are these estimated freely? There are reasons why
residual varianceswould be left invariant across classes, and also
times where they would be specified to be class specific. Fixing
the residual variances across latent classes assumes that there is
no difference in variability of the groups in their deviation from
the growth curves. Making the residual variances different
assumes that some groups (classes here) might show more
variability along their growth curve than others. Class-specific
residual variances might be more realistic, but because such a
model containsmanymore parameters, itmight cause estimation
problems. Also, residual variances could go to zero, which is
typically seen if analyzing discrete data with a continuous data
model.We encourage researchers tomake this decision based on
the specific substantive information they have, as well as any
estimation issues that arise during the analysis process.

Whether the variance–covariance matrix is constrained
across classes is more a substantive decision. However, when

each latent class is allowed to have its own variance–covar-
iance matrix, the model contains many more parameters to be
estimated and subsequently requires larger sample sizes to
avoid convergence issues. Typically, local solutions are
obtained with smaller sample sizes and separate variance–
covariance matrices being estimated. Often researchers decide
to constrain the variance–covariance matrix to simplify the
model (or to deal with error messages about local maxima).
Whatever decision is made about the between-class variance–
covariance matrix, it should be explicitly reported in the paper
due to the impact the decision can have on substantive conclu-
sions. Specifically, researchers would want to indicate clearly
which method they used and why (e.g., “theory suggests
variation in growth factors is constant across subgroups, so
we held this matrix fixed,” etc.). Then the researchers should
interpret results according to the assumption being made, but
be aware that findings might be altered if the variance–covar-
iance matrix is redefined. For example, if the covariancematrix
was shifted (e.g., to be freely estimated across the classes), then
the latent class solution could shift and create completely
different substantive interpretations.

Item 7: Are Alternative Shape and Functional Forms of
the Trajectories Described?

One of the main ways in which trend lines can differ is in the
growth functions specified to capture change over time.
Growth models based on polynomial functions are com-
monly implemented to assess change that is linear, quadratic,
cubic, and so on (see, e.g., Muthén & Shedden, 1999).
However, growth need not be defined in this manner. Many
models that are nonlinear in the parameters are also com-
monly implemented; for example, logistic, Gompertz, and
Richards growth curves (e.g., Grimm & Ram, 2009).
Semiparametric models implementing smoothing functions
such as the generalized additive model can also be used to
estimate growth (Zuur, Ieno, & Smith, 2007); likewise, pie-
cewise models can be specified (e.g., Kohli, Hughes, Wang,
Zopluoglu, & Davison, 2015; Palardy & Vermunt, 2010). It is
not only important to report what shape each of the trajec-
tories has in the final model, but we also advise to test this
model against alternative specifications—for example, com-
paring a linear growth model with another model that
includes a quadratic effect. See the online materials available
on the Open Science Framework (https://osf.io/vw3t7/) for an
explanation of how specifying a different form of growth
function affects the interpretation of the growth parameters.

Item 8: If Covariates Have Been Used, Can Analyses
Still Be Replicated?

Predictors (or covariates) can be added to the model at three
different places (see Figure 1): (1) as time-varying or time-
invariant covariates at the level of the dependent variables to
control for variability in specific time points; (2) on the level
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of the growth parameters to find latent classes that cannot be
explained by individual differences on the covariates (like
age, food intake, socioeconomic status); or (3) to predict
class membership. If covariates are specified as part of the
model, then this is often called a conditional model—
whereas an unconditional model is one that explores the
number of latent classes without consideration of covariates.
Note that predictors can be directly observed or latent,
regardless of where they appear in the model. When pre-
dicting class membership, there are currently several meth-
ods available, which we describe next.

One-Step Method

The predictors of class membership are added into a joint
model in which the class solution and the prediction for class
membership are estimated simultaneously. There are two
major disadvantages of the one-step method. First, the makeup
of the latent class structure can be inappropriately modified by
the inclusion of predictors. In theory, any change to the model
can affect classification of individuals into the latent classes.
Adding the predictor directly into the model can lead to flawed
results because the covariates might affect the latent class
formation, and the latent class variable might lose its meaning
as the latent variable measured by the indicator variables

(Asparouhov & Muthén, 2013, p. 329). This effect is nicely
described by La Greca et al. (2013, p. 360). In this specific
situation, the number of classes should also be reconsidered
rather than adhering to the number determined without the
inclusion of covariates. Whether the effect of changing class
solutions is wanted or unwanted, it is not so clear whether one
should decide about the number of classes in a model with or
without covariates; see Palardy and Vermunt (2010), who
compared models with and without covariates also in terms
of the required number of classes. In conclusion, users do not
want to mix up the problem of selecting the main predictors
with the problem of finding the number of relevant classes.

Second, there is an index referred to as entropy that is
affected (see also Item 13). The goal of entropy is to aid in
determining the accuracy of classification of individuals into
the different latent classes. If entropy is near 1.0, then classi-
fication of individuals is said to be adequate. If entropy is
near 0, then classification is assumed to be poor. An artifact
of the one-step method for including predictors is that the
entropy index is artificially overestimated, which inappropri-
ately inflates confidence in the classification of individuals.
Moreover, the meaning of entropy itself changes. It indicates
how well one can predict class membership based an indivi-
dual’s trajectory and covariate values.

FIGURE 1 An example of a latent trajectory model with one to eight classes (C = 1, …, 8), eight overserved variables (posttraumatic stress disorder
[PTSD]), three growth parameters (intercept, slope, quadratic term) and three places where covariates can be added to the model.
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Standard Three-Step Method: Saving Most Likely
Class Membership and Analyze These Data
Separately

When following this strategy, one first determines the
number of latent classes without the predictors on class
membership (Step 1). Then the most likely class member-
ship is saved, merged with the original data (Step 2), and
analyzed separately from the latent trajectory model using a
multinomial regression analysis (Step 3). This method was,
for example, used and clearly described by Andersen,
Karstoft, Bertelsen, and Madsen (2014, supplemental mate-
rials, p. 2) and by Pietrzak et al. (2014, p. 208). Although
this strategy of using the most likely class membership
solves various issues associated with the one-step approach,
it ignores the uncertainty about one’s class allocation. That
is, it is assumed that class allocation is obtained without
classification errors. What results is that the prediction based
on covariates will be an underestimation of the true effect.
However, it might be possible for entropy to aid in this
assessment. The higher the entropy index, the fewer the
classification errors, and the less bias in the prediction of
class membership (Celeux & Soromenho, 1996). The strat-
egy of saving most likely class memberships should only be
employed with a high enough entropy and if authors
acknowledge the attenuation effect.

Three-Step Approach Using the Pseudo-Class
Method

A method developed by Wang, Bandeen-Roche, and
Hendricks Brown (2005), first estimates the latent class
model, and then the latent class variable is handled through
MI using the posterior distribution obtained by the model.
This process is followed by analyzing the imputed class
variables together with the covariates using the MI technique
developed by Rubin (1987; see also Asparouhov & Muthén,
2007). This strategy is applied and nicely described by
Peutere, Vahtera, Kivimäki, Pentti, and Virtanen (2015, p.
17). Just like the other methods described earlier, if the
pseudo-class method is used, then it should be explicitly
described, and authors should acknowledge that MI was
implemented for the latent class variable.

Three-Step Approach with Adjustment for
Classification Errors

This method was developed by Vermunt (2010a, 2010b),
expanding on ideas by Bolck, Croon, and Hagenaars (2004;
see also Bakk, Tekle, & Vermunt, 2013). It differs from the
three-step approaches discussed earlier in that the analysis in
the third step takes into account that the class allocations
contain classification errors; that is, these are not the true
class memberships. In fact, again a latent class model is
estimated, but now with the assigned class memberships

from Step 2 as the single indicator, with classification
error probabilities fixed to their estimates from Steps 1 and
2 (Asparouhov & Muthén, 2013, p. 330). This approach
allows covariates to predict class membership as in a stan-
dard latent class model, but also to have distal outcomes that
are predicted by class membership (Bakk & Vermunt,
2016).

The bias-adjusted three-step approach has the same
advantages as the simpler three-step approaches discussed
earlier; that is, the building of a meaningful latent trajectory
model for the response variable(s) of interest can be sepa-
rated from the modeling of the relationship of the latent
classes with external variables. However, one should be
aware of the fact that this three-step approach also makes
certain assumptions, among others that external variables
and class indicators are conditionally independent and
when the external variables are distal outcomes that the
class-specific distribution of the distal outcomes is specified
correctly. Note that these assumptions are also made when
adopting a one-step approach, although the conditional
independence assumption could then be relaxed. As far as
the class-specific distribution of distal outcomes is con-
cerned, Bakk and Vermunt (2016) showed that the so-called
BCH-variant (Bolck et al., 2004) is robust for violation of
distributional assumption, whereas the maximum likelihood
(ML) variant is not.

In conclusion, covariates can be added to the LGMM in
three different places within the model (see Figure 1), and
there are at least four methods that can be used to include
covariates when the goal is to predict class membership,
which is the most often used reason to include covariates.
Because the way covariates are used and the specific
method employed has a strong impact on how the result of
the model can be interpreted, without stating a clear pre-
ference for one method or another, we do stress that it is of
utmost importance to be completely transparent about the
followed procedure.

Item 9: Is Information Reported About the Number of
Random Start Values and Final Iterations Included?

If ML has been used to estimate the latent trajectory model,
then it is important to know if the final class solution has
been converged to the maximum of the ML distribution and
not on so-called local maxima. This is because the ML
function is not always a function with only one maximum.
Rather, there might be several maxima present, and finding
the “true” (i.e., absolute) maximum often depends on the
starting values used for the model parameters. A solution
based on a local maximum (opposed to the true maximum)
can be highly different from the optimal solution. It is
therefore strongly advisable to rerun the model with many
different starting values to ensure the optimal solution has
been found. The importance of using multiple sets of
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starting values when estimating a mixture model has been
discussed in great detail in the statistical literature. Hipp and
Bauer (2006), for example, discussed at length the impact of
inappropriate, or too few, sets of starting values. They
showed that when starting values are not selected properly,
the results obtained can be substantively erroneous. They
also suggested determining starting values for each para-
meter “judiciously” based on the substantively appropriate
parameter space for each parameter being estimated.
Starting values for parameters can be generated randomly
but, in mixture modeling contexts, it is often advantageous
to select these based on some theory. Finch and Bronk
(2011) discussed selecting starting values for thresholds in
the context of latent class analysis based on theory to avoid
the estimation algorithm searching in the wrong parameter
space. It is also recommended that the number of starting
values be increased to at least 50 to 100 sets for each
parameter to fully explore the parameter space and avoid
converging to local maxima (Hipp & Bauer, 2006). When
user-specified starting values are provided based on theory
or previous research, then these sets of starting values
represent random perturbations of the substantively relevant
starting values that were specified by the user; this helps
ensure that all sets cover the probable parameter space.

Item 10: Are the Model Comparison Tools Described
That Were Used for Model Selection?

To determine which model fits best with the data, that is, to
answer the questions about how many latent classes should
be used, several statistical criteria can be used. As was
investigated in a large-scale simulation study by Nylund,
Asparouhov, and Muthén (2007), the Bayesian information
criterion (BIC; Schwarz, 1978) outperformed other model
selection tools like the Akaike information criterion (AIC;
Akaike, 1973) in the context of LGMMs. Both are model

selection tools for assessing relative model adequacy based
on the log-likelihood and the number of parameters as a
penalty of model complexity. The model with the lowest
BIC value is the preferred model in terms of the number of
trajectories (see the results for Model 2 in Figure 2). Many
variations to the BIC have been published and, among these,
the sample-size-adjusted BIC is sometimes used in latent
trajectory studies.

Another model selection tool often used is the Lo–
Mendel–Rubin–likelihood ratio test (LMR–LRT) developed
by Lo and Rubin (2001). The LMR–LRT tests the fit of
k − 1 classes against k classes, where a significant result
thereby indicates that the null hypothesis of k − 1 classes
should be rejected in favor of at least k classes. However, as
was indicated by Jeffries (2003, p. 901), “the result is not
proven and simulation studies suggest that it may not be
correct.” Subsequently, Nylund et al. (2007, p. 538) replied
that early simulation studies in the original Lo, Mendell, and
Rubin (2001) paper showed that despite this supposed ana-
lytic inconsistency, as outlined by Jeffries, the LMR-LRT
could still be a useful empirical tool for class numeration.
Given the potential inconsistencies in the literature, we
would advise researchers not to base the final decision on
the number of classes solely on the LMR–LRT. More
recently, the bootstrap likelihood ratio test (BLRT;
McLachlan & Peel, 2004) has in simulation studies been
shown to be a good indicator for choosing the optimal
number of classes (Nylund et al., 2007), but it often appears
to be always significant when applied to empirical data.

Although there is discussion about which fit measure to use,
there seems to be consensus among our expert panel that the
BIC is the most favored one. When the optimal dimensionality
identified by model selection tools and the entropy index is
large, when these tools are in conflict with each other, or when
they conflict with theory, applied researchers tend to reduce the
number of latent trajectories to a lower number that would still
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FIGURE 2 Bayesian information criterion (BIC) values for three hypothetical model results (BIC-1, BIC-2, BIC-3). Note that the model with one asterisk
indicates the number of random starts was increased to 1,000 and the model with two asterisks did not reach convergence.
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be theoretically meaningful. For example, researchers typically
remove trajectories that appear to account for only minor
variations (e.g., Galatzer-Levy et al., 2013), or they decide to
reject a model with convergence issues (e.g., Orcutt, Bonanno,
Hannan, & Miron, 2014).

In sum, we urge researchers to be transparent in how they
select the final model. With the current state of affairs in the
literature, we would have a preference for using the BIC, but
we suggest that authors include more than one comparison
tool to avoid “cherry picking.” See Table 2 and Figure 2 for
examples of how this can be done (note that the values
reported in Table 2 are hypothetically derived for illustrative
purposes). If fit indexes disagree on the optimal number of
classes, akin to the case in Table 2, then this finding should
be acknowledged. Authors should report on all models tested
and then make a case for the model they selected, preferably
in combination with theory (see also Item 14). Note that there
are many alternative indexes proposed in the literature (e.g.,
Wang et al., 2005), and this field is rapidly developing (see,
e.g., Klijn, Weijenberg, Lemmens, van den Brandt, & Passos,
2015), so researchers should always be aware of new
developments.

Item 11. Are the Total Number of Fitted Models
Reported, Including a One-Class Solution?

The goal of trajectory-based analyses is to find the optimal
number of latent classes that describe the variability in the
data set. To find the optimal number of classes, we suggest a
forward modeling approach starting with a one-class solu-
tion, which is the best-fitting nonmixture latent growth
model. Such a model simply assumes that there are no
subgroups and all individuals follow, more or less, the
same trajectory over time. Often researchers do not report
the one-class solution, but it might very well be the case that
a nonmixture model actually fits the data best. This is
illustrated in Figure 2 where, for Model 1 without the one-
class model, one would select the three-class solution.
However, when including the one-class model, the BIC
points to this model as being optimal. As such, the conclu-
sion should be that there are no latent classes (i.e., a single
class solution is best). After fitting the one-class model, one
should incrementally add extra classes one at a time to
investigate which model fits the data best. This process
does not end at the moment the model fit indexes stop
improving. Instead, one should fit at least one or two addi-
tional models to ensure the full gamut of possible models
has been examined.

Item 12: Are the Number of Cases per Class Reported
for Each Model?

The decision on the final number of classes should not be
solely based on statistical criteria. It could, for example, be
that the statistically optimal solution is a solution with

trajectories that contain very few subjects.2 When two clus-
ters (i.e., latent classes) differ drastically in size (e.g., when
one cluster is much larger in size compared to another), then
the larger cluster can overwhelm the smaller cluster, thus
resulting in inaccurate estimates of cluster sizes and corre-
sponding growth trajectories (Depaoli, 2013). Moreover, the
model might not properly detect clusters that are small in
size because there is not enough substantive information to
properly identify these clusters. Instead, the trajectories
might be based on outliers, or other random fluctuations,
rather than substantive clusters (Bauer & Curran, 2003a;
Muthén, 2003; Rindskopf, 2003). Therefore, researchers
should provide information about the number of cases allo-
cated to each of the latent classes per model (see Table 2 for
an example of how this can be achieved).

Item 13: If Classification of Cases in a Trajectory Is the
Goal, Is Entropy Reported?

If the goal of the analyses is to classify individuals, which is
typically the case with latent trajectory studies, then it is
essential to report on the performance of this classification.
One tool that can be used for this purpose is the relative
entropy value, with higher values indicating that individuals
are classified with more confidence. That is, the solution is able
to clearly classify persons in a specific class, and there is
adequate separation between the classes.3 The relative entropy
is also called a measure of “fuzziness” of the derived latent
classes (Jedidi, Ramaswamy, & DeSarbo, 1993; Ramaswamy,
DeSarbo, Reibstein, & Robinson, 1993). The relative entropy
takes on a value of 0 when all of the posterior probabilities are
equal for each subject (i.e., all participants have posterior
probabilities of .33 for each of three latent classes). When
each participant perfectly fits in one latent class only, the
relative entropy receives a maximum value of 1, which indi-
cates that the latent classes are completely discrete partitions.
Therefore, an entropy value that is too low is cause for con-
cern, as it implies that people or cases were not well classified,
or assigned to latent classes. Thus, as stated by Celeux and
Soromenho (1996) the relative entropy can be regarded as a
measure of the ability of the latent trajectory model to provide
a relevant partition of the data; a nice explanation is provided
by Greenbaum, Del Boca, Darkes, Wang, and Goldman (2005,
p. 233). The relative entropy should, however, not be used to

2When small latent groups are of great substantive interest, one might
want to use Bayesian estimation, which has shown to outperform ML
estimation in LGMM and LCGA models with small sample sizes; see, for
example, Depaoli (2013).

3 Class separation refers to how different the latent classes are statisti-
cally or substantively. Class separation could be based on a variety of
different trajectory characteristics, including having very different intercepts
or slopes, trajectory shapes varying across classes (linear vs. nonlinear
growth), the covariance structure underlying the latent growth factors
differing across classes, and so on. See Depaoli (2013) for more details
on latent trajectory class separation.
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select the number of latent classes (Jedidi et al., 1993; Kaplan
& Depaoli, 2011; Tein, Coxe, & Cham, 2013). As suggested
by Ram and Grimm (2009), models with higher entropy are
only favored when selecting among models with similar rela-
tive fit indexes (e.g., BIC). Nonetheless, we advise authors to
report entropy values (see, e.g., Table 2), or the number of
misclassifications as was done by Greenbaum et al. (2005, p.
233), for each of the models.

Item 14a: Is a Plot Included With the Estimated Mean
Trajectories of the Final Solution? and Item 14b: Are
Plots Included With the Estimated Mean Trajectories
for Each Model?

As discussed previously, many researchers use substantive
arguments solely—or in combination with model selection
tools—to decide on the number of classes. When assessing
model results for different class solutions, it is quite helpful
to examine trajectory plots. A first type of graph to include
represents the mean trajectories, not only for the final
model, but also for each model under investigation (e.g.,
the models being compared during the model building and
assessment phase of analysis). In the online materials
(https://osf.io/vw3t7/) we provide an example. It might
seem a little challenging given the potential for a large
number of models to be fit, but if theoretical arguments
are used to decide on the number of classes, then all solu-
tions have to be presented. Note that if the journal does not
allow for such a large figure, then the information can be
provided as online supplementary materials. We feel it is
essential to provide all the information needed to replicate
the decision on the final number of classes.

Item 14c: Is a Plot Included of the Combination of
Estimated Means of the Final Model and the Observed
Individual Trajectories Split Out for Each Latent Class?

Aside from reporting the estimated mean trajectories for
each model, it is also important to study the final estimated
mean of the trajectories in combination with the observed
individual trajectories. As argued by Erosheva et al. (2014),
it allows us to visualize the extent to which individual
variability is explained by latent group trajectories, as well
as the extent of overlap between observations of individuals
from different groups. As illustrated in Figure 3, it might be
that all individuals follow the mean trajectory and maybe
LCGA can be applied (Figure 3a); note that although this
plot shows variation in individual trajectories, they all fol-
low basically the same pattern of growth over time. In
contrast, Figure 3b shows great variability in the individual
trajectories, and the mean trajectory does not really reflect
what is going on in the data. In Figure 3c, none of the
individual trajectories actually follow the mean trajectory
and it could be questioned whether this result should be
interpreted at all, even if the fit statistics are adequate.

Figure 3d is even worse because there appears to be a
quadratic effect, but this is completely based on missing
data.

Item 15. Are Characteristics of the Final Class Solution
Numerically Described?

Solely presenting plots of the latent trajectories obtained
from the various models examined is not sufficient. It is
important to also include a table of results for the final
model, which would include the following for each model
parameter: estimated means, standard deviations, p values,
confidence intervals, and the sample size used to estimate
each model parameter (noting any missing data). Having
access to all the information in a table helps aid in inter-
pretation for readers; even if numerical results are not fully
described in the text, they still have access to the full
model results. Including such a table also contributes to
full transparency of results, making perfect replication
possible because full model results have been presented
in a table.

Item 16: Are the Syntax Files Available?

There is a growing awareness that open and transparent
research is essential to maintaining and improving the qual-
ity of science (Asendorpf et al., 2013; Miguel et al., 2014;
Nosek et al., 2015; Wicherts, 2013; Wicherts, Bakker, &
Molenaar, 2011). One of the ways in which transparency
can be reached is through sharing data, syntax, and other
supporting material (on the Open Science Framework, see
https://osf.io/vw3t7/). These are important components to
any paper and provide the means for other researchers to
reproduce, or alter, the reported data analysis. Moreover, it
gives other researchers the opportunity to detect potential
errors in the analysis, or even fraudulent results. Ensuring
that syntax files are available is a first step toward fully open
data and material. There are many ways in which the syntax
can be made available to readers. In some cases, it is
possible to include the syntax in the article via an appendix.
Alternatively, syntax can be made available through online
supplementary materials, or on the online data repository
stores. Preferably, this information should not be made
available solely on personal Web sites, as these are not
permanent and might go offline one day. Furthermore,
some recently created tools can aid in the availability of
syntax. Examples include an online collaboration tool devel-
oped by the Center for Open Science, which allows research
teams to publicize any part of their study materials as a way
to support open communication. The Center for Open
Science has also created certain “badges” to certify papers
that adhere to open materials requirements. These develop-
ments mean that there is truly no reason to keep your syntax
files from your audience. Our files are available on the Open
Science Framework (https://osf.io/vw3t7/).
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APPLICATION OF GROLTS IN A SYSTEMATIC
REVIEW OF LATENT TRAJECTORY STUDIES

To evaluate the consistency, validity, and usability of
GRoLTS, we pilot-tested the questionnaire on 38 studies
that all applied latent trajectory analyses (i.e., LGMM or
LCGA) to assess change in PTSS after a traumatic event.
Completing GRoLTS took an average of 20 min per paper.
Two independent assessors administered GRoLTS to each of
the 38 papers included. When scores were conflicting, con-
sensus about the score was easily obtained after shortly
discussing the assessors’ rationales behind their respective
scores. The complete list of references and all of the details
surrounding these papers can be found on the Open Science
Framework (https://osf.io/vw3t7/).

Figure 4 displays the sum scores for the GRoLTS items
across all papers, but not one single paper came close to the
maximum score, which is 21 (M = 9.47, SD = 1.97,
range = 5–15). After examining the specific GRoLTS
items that were reported (see Figure 5), we found that

FIGURE 3 Plots of estimated means with individual trajectories based on hypothetical data (but inspired by empirical results).
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FIGURE 4 Total Guidelines for Reporting on Latent Trajectory
Studies (GRoLTS) score plotted for 38 studies applying latent trajectory
analyses examining development of posttraumatic stress symptoms after a
traumatic event.

462 R. VAN DE SCHOOT ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 1

1:
43

 2
1 

Se
pt

em
be

r 
20

17
 

https://osf.io/vw3t7/


some items were almost always reported, whereas others
were hardly ever reported. We highlight the top six most and
least frequently reported items.

Frequently Reported Items (Top 6)

1. All papers provided a plot with the estimated mean
trajectories of the final solution (Item 14a).

2. Themodel selection tools usedwere reported (Item 10) in
almost all papers (97%) and always included the BIC.
Other model selection tools were mentioned in roughly
two thirds of the papers: SS-BIC = 60.5%; AIC = 63,2%;
LRT = 65.8%; BLRT = 60.5%. It was mentioned in 12
papers that the model fit indexes disagreed, in 9 papers
that the AIC or BIC kept decreasing, in 10 papers the
preferred model based on the statistical criteria did not

make sense, and in 5 papers the best model contained a
class with only a couple of individuals allocated to one of
the subgroups. Of the papers where model selection tools
did not provide an easy solution, 13 papers cited theory
instead of statistics to choose between models.

3. Software was reported in 95% of the papers (Item 5),
with Mplus being the most popular (29 papers), fol-
lowed by SAS Proc Traj (7 papers); 30 papers (79%)
reported which version was used.

4. Entropy level was reported in 95% of the papers (Item
13) with a median entropy value reported across all of
these papers of .85.

5. The fifth most often reported item was Item 3c (how
missing data was dealt with; reported in 89.5% of
papers). The most popular method for handling miss-
ing data was full information ML (24 papers), but
only one study combined this approach with auxiliary
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item 3a: missing data mechanism

item 3b: auxilliary variables
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item 4: distribution

item 5: software
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item 15: descriptive statistics
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FIGURE 5 Papers (%) fulfilling individual Guidelines for Reporting on Latent Trajectory Studies (GRoLTS) items. Note. LGMM = latent growth mixture
modeling; LGCA = latent class growth analysis. Total number of papers examined for systematic review is N = 38. Exact percentages are given in the green
bar.
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variables. Three studies indicated using MI for hand-
ling missing data.

6. A clear description on the use of covariates was
reported in 86% of the papers. The one-step method
was applied in 15 papers, and the standard three-step
method (i.e., saving the most likely class membership
and analyzing data separately) was used in 14 papers.
The recently proposed biased adjusted three-step
method of Vermunt was only applied in three papers.

Infrequently Reported Items (Top 6)

1. As described in GRoLTS, we recommend not only
including a graph representing the mean trajectories
for the final model (Item 14a), but also for each model
under investigation (Item 14b). In the PTSS papers,
none of the papers presented the latter type of plots.
Reporting the final estimated mean of the trajectories
in combination with the observed individual trajec-
tories (Item 14c) was reported in just 5 papers (13%).
The failure to report these plots (Items 14b and 14c) is
not limited to the field of PTSS literature—the sys-
tematic reviews of Piquero (2008) and Erosheva et al.
(2014) found 0 out of 87 and 8 out of 200 (4%)
trajectory studies reporting such graphs.

2. Another item that was not described at all is the
between-class variance–covariance matrix structure
(Item 6b). Although this is considered a very impor-
tant topic from a statistical perspective, apparently
researchers take the between-class variance–covar-
iance matrix structure for granted, and probably stay
with the default setting of the software used.

3. Only one study reported on the exact number of
starting sets used (Item 9).

4. Ensuring that syntax files are available (Item 16) is a
first step toward fully open data and material. This
information was provided in only two of the papers
we examined.

5. The missing data mechanism (Item 3a) was only
reported in two papers; they concluded MAR.

6. Although 74% of the papers reported on the metric of
time, only three reported on the variability of time in
detail (Item 2).

DISCUSSION AND CONCLUSION

We have developed GRoLTS, a tool for reporting on latent
trajectory studies (LGMM or LCGA). We have gone through a
systematic process to identify key components that, according to

a panel of expert statisticians and senior users, are necessary
when reporting results for latent trajectory studies. Reporting
standards are important for any statistical model implemented in
the applied literature. Other reporting standards, such as the
CONSORTchecklist for the reporting of randomized controlled
trials, have successfully been implemented. A systematic review
has shown that the use of reporting standards such asCONSORT
does improve the quality of reporting (Plint,Moher,Morrison,&
Schulz, 2006). We expect that especially for the field of latent
growth trajectory models, reporting standards are an irrefutable
component to abide by when presenting model results.
Substantive interpretations rely heavily on a variety of compo-
nents embedded within the specification and estimation of these
models.

We recommend that GRoLTS should be used in any applica-
tion of latent growth trajectory modeling to ensure proper dis-
semination of results. Note that GRoLTS does not aim to
measure the quality of the paper itself, but rather the quality of
reporting on key issues of latent trajectory models. GRoLTS has
been designed to be thorough, yet easy (and concise) to imple-
ment. Although GRoLTS is relatively detailed, many of these
components can be adequately handled in just a few extra
sentences added to the text of the paper, or with the use of online
supplementary material. GRoLTS can be used by authors who
prepare their manuscript for submission, and could be endorsed
by journals as a standard for reporting on LGMM or LCGA
studies. Naturally, GRoLTS should be regularly updated and
revised because it is a rapidly evolving method that is used
heavily across different fields. New advances might necessitate
the addition or removal of GRoLTS items. We recognize that
there is a great deal of variability in field standards and types of
research questions addressed using trajectory-basedmethods.As
a result, it is important to consider whether additional points not
addressed by GRoLTS need to be considered when reporting
trajectory results.

We would like to end this article with a quote by Bauer
(2007):

The fundamental question I sought to address is whether
these models [he refers to LGMM/LCGA models] are likely
to advance psychological science. My firm conviction is
that, if these models continue to be applied as they have
been so far, the answer is clearly no. … I therefore believe
that direct applications of GMMs should be refrained from
unless both the theory and data behind the analysis are
uncommonly strong. Otherwise, the application of GMMs
in psychological research is likely to lead to more blind
alleys than ways forward. (p. 782)

We agree with Bauer’s quote and feel that the way these
models have been reported on in the past has not been as
transparent and consistent as would be needed to produce
trustworthy and replicable findings. If researchers across all
fields have a strong theoretical basis and standardize their
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reporting habits using the GRoLTS, then we believe latent
growth trajectory modeling can take the next step and become
one of the most transparent and replicable areas of applied
statistics.
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