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Pushing the Limits: The performance of ML and
Bayesian estimation with small and unbalanced

samples in a latent growth model

Summary. Longitudinal developmental research is often focused on patterns of change or
growth across di�erent (sub)groups of individuals. Particular to some research contexts,
developmental inquiries may involve one or more (sub)groups that are small in nature and
therefore di�cult to properly capture through statistical analysis. The current study explores
the lower-bound limits of subsample sizes in a multiple group latent growth modeling by
means of a simulation study. We particularly focus on how the maximum likelihood (ML) and
Bayesian estimation approaches di�er when (sub)sample sizes are small. The results show
that Bayesian estimation resolves computational issues that occur with ML estimation, and
that the addition of prior information can be the key to detect a di�erence between groups
when sample and e�ect sizes are expected to be limited. The acquisition of prior information
with respect to the smaller group is especially influential in this context.

Many researchers in the social and behavioral sciences use latent growth modeling
(LGM) to study development of individuals over time (e.g., Little, 2013). Within
LGM it is also possible to compare growth and the impact of variables on growth
between di�erent groups of individuals, for example, between a focal (i.e., small) group
and a reference group. Researchers with this objective, however, often encounter two
di�culties. In particular, the comparisons they want to make are between groups: (1)
that have relatively di�erent sample sizes, or (2) of which at least one is considered to
be very small according to common guidelines for implementing the statistical model.

From the literature, we know that with traditional maximum likelihood (ML)
estimation, the consequences of small sample sizes can include: biased point estimates
(Boomsma and Hoogland, 2001; Depaoli, 2013; Lee and Song, 2004; Lüdtke et al.,
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2011; Meuleman and Billiet, 2009; Van de Schoot et al., 2015), inadmissible estimates
(Boomsma and Hoogland, 2001; Can et al., 2015; Hox and Maas, 2001; Meuleman
and Billiet, 2009; Tolvanen, 2000), convergence issues (Boomsma and Hoogland, 2001;
Hochweber and Hartig, 2017; Hox et al., 2014; Lüdtke et al., 2011), and inflated Type-I
error rates (Boomsma and Hoogland, 2001; Hox and Maas, 2001; Hox et al., 2014; Lee
and Song, 2004; Meuleman and Billiet, 2009).

There is, however, little known about the consequences of unbalanced samples
(i.e., where sample sizes vary drastically across the subgroups being examined, e.g., 10
participants in the focal group vs. 500 in the reference group), especially when latent
growth models are being implemented. We only know that unbalanced samples in
LGM often result in low statistical power (Muthén and Curran, 1997), but its specific
e�ect on coverage, biased point estimates, and estimation problems has not been
thoroughly examined in the literature. Altogether, these issues may deter researchers
from comparing the development of focal and reference groups in latent growth models.

Bayesian estimation is an alternative estimation method gaining in popularity
(Kruschke, 2011; Van de Schoot et al., 2017). In Bayesian statistics, prior information
is combined with the data in the analysis, resulting in a posterior distribution. The
posterior distribution reflects probable parameter values given the prior information
and the data. From the posterior distribution, a measure of central tendency (i.e.,
the mean, median, or mode) is usually taken as a point estimate for the parameter
of interest. Additionally, a 95% (credible) interval can be derived from the posterior
distribution containing the most probable values for the parameter given the data.
The frequentist 95% confidence interval, in contrast, will contain the true population
value in 95% of the intervals over a long run of trials. To readers interested in a gentle
introduction into Bayesian statistics for social scientists, we recommend Kruschke
(2014), and Van de Schoot et al. (2013).

In the current paper, we conduct a simulation study to evaluate the performance
of maximum likelihood estimation and Bayesian estimation for latent growth models
with small and unbalanced samples. The goal of the simulation is to highlight best
practice when dealing with subgroup sizes that are quite di�erent from one another.

2.1 Background on Sample Size Limits in LGM with ML and
Bayesian Estimation

Muthén and Curran (1997) investigated the e�ect of unbalanced sample sizes in
experimental designs on statistical power in LGM with sample size ratios varying
from 1:1 (balanced) to 1:10. In general, Muthén and Curran (1997) found that the
more extreme the sample size ratios were, the lower the statistical power to detect a
di�erence between groups with ML estimation. When the ratio was more extreme than
1:5, even samples with 1,000 participants in total showed less than desirable power
(<.80) to detect a small e�ect (Cohen’s d = .20). Due to their focus on experimental
designs, Muthén and Curran (1997) do not cover very small sample sizes, extreme
sample size ratios, or the inclusion of covariates to limit the impact of confounders. No
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literature was found that covered aspects other than power under unbalanced sample
sizes in LGM.

With respect to estimation in relation to total sample size for one group, estimates
from ML estimation with a sample size as low as 50 do not substantially deviate from
the population value (i.e., relatively unbiased) for means and factor loadings in LGM
and related multilevel models (Hox and Maas, 2001; Maas and Hox, 2005; McNeish,
2016a,b; Meuleman and Billiet, 2009; Tolvanen, 2000). Statistical power, however,
is generally insu�cient with samples smaller than 100 for the types of e�ect sizes
commonly seen in empirical studies, and convergence issues also arise (Boomsma and
Hoogland, 2001; Hochweber and Hartig, 2017; Hox and Maas, 2001; Lüdtke et al.,
2011; Maas and Hox, 2005; Meuleman and Billiet, 2009; Tolvanen, 2000). Bayesian
estimation does not have the same issues with small samples as ML estimation for
two reasons. First, in Bayesian estimation, the results are determined by more than
the data: prior information is also included by means of prior distributions. Prior
distributions can be based on information that a researcher has about parameters in the
model a priori. When no information is available, so-called uninformative distributions
can be adopted, which typically specify a very wide range of values for the parameter
as probable. The more prior mass surrounding the population value, the better the
model estimate will represent this value. Consequently, the non-null detection rate
is higher, and inference errors are less likely to occur (Lee and Song, 2004; Depaoli,
2013; Van de Schoot et al., 2015).

The second reason Bayesian estimation does not have the same issues with small
samples is that Bayesian estimation does not rely on asymptotic assumptions about
sampling distributions akin to ML estimation (Asparouhov and Muthén, 2010). Depaoli
(2013) shows in a growth mixture model that the use of uninformative priors as
compared to ML estimation results in fewer problematically biased parameter estimates
(i.e., bias Ø 10%). When Bayesian estimation is used with an uninformative prior, a
sample size of 20 already results in accurate estimates in a multilevel model (Hox et al.,
2012). In addition, the coverage of the population value was better with Bayesian
estimation, a result confirmed by Van de Schoot et al. (2015) for repeated-measures
analyses.

2.1.1 The Current Investigation

In order to ensure conditions were applicable to real data situations, the simulation
study is inspired by an empirical dataset on the development rate of working memory
in young heavy cannabis users versus their non-using peers. The data originate from
268 young adolescents enrolled in special education due to behavioral problems (Peeters
et al., 2014). To improve on the notion of causality, the development of both groups
was corrected (by means of a time-invariant covariate) for the impact of quantity and

Statistical power is a frequentist term that involves the null hypothesis. Since the null
hypothesis does not exist in Bayesian statistics, we refer to the non-null detection rate
instead.
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frequency of alcohol use at the start of the study, as recommended by Jacobus et al.
(2009). We set up the simulation this way in order to compare and establish sample
size requirements to evaluate a small di�erence in development between groups for
ML and Bayesian estimation when one of the groups has a sample size below 50.

By means of the simulation, we compare the sample size requirements to evaluate
a small di�erence in development between groups for ML and Bayesian estimation.
Regarding Bayesian estimation, the balance between sample size requirements and
the required specificity of prior information is investigated as well. Additionally, we
explore how the results are a�ected when a substantial amount of prior information
can be found for the reference group but not for the focal group. It can be expected
that prior information with respect to a focal group is harder to obtain.

2.2 Method

To compare the performance of ML estimation and Bayesian estimation in the evalua-
tion of small and unbalanced samples in a latent growth model, we conducted a Monte
Carlo simulation study was conducted in Mplus version 7.11 (Muthén and Muthén,
2012) directed by the R-package MplusAutomation (Hallquist, 2013) in R 3.0.1 (R
Core Team, 2015a). To promote transparency and replicability, analyses syntax files
are provided in Appendix A.2, and all input and output is available at osf.io/gjzu8.
In this section, we elaborate on the model of interest, the main characteristics of the
simulation study, and the evaluation criteria.

2.2.1 The Latent Growth Model

Figure 3.1 displays the latent growth model as applied in this study. The model has four
observed variables (yg

1 ≠ y
g

4) representing repeated measures of the same construct. In
the empirical data, this construct is performance on a working memory task expressed
in percentages. The repeated measures are the indicators for the intercept, linear slope,
and quadratic slope latent variables. The linear growth factor in this model represents
the growth rate at one time point (typically the first time point). The model has one
covariate representing an observed time-invariant predictor, which is a measure of
alcohol use quantity and frequency at the start of the study in the empirical data. As a
result, the latent time variables technically have intercepts instead of means. However,
to avoid confusion between the intercept growth factor and the intercepts of the latent
growth factors, the latter will be referred to as being “means” throughout the paper.

In order to assess the growth rate di�erence between groups, a new parameter
(denoted by ∆–) was constructed by subtracting the linear slope mean of group 2 (i.e.,
the focal group) from that of group 1 (i.e., the reference group).

osf.io/gjzu8
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Fig. 2.1: Multiple group latent growth model with one covariate and groups indicated by g. y
g
1 ,

y
g
2 , y

g
3 , y

g
4 represent four assessments of a developing construct with residual error variances. x

g

is a time-invariant predictor of growth that represents the latent variable Covariateg without
measurement error. The regressions of the latent growth factors Interceptg, Lin. slopeg, and
Quad. slope on the Covariateg are equal over groups.

2.3 Simulation Study Design

The population parameters originated from multiple group latent growth analyses
(see Appendix A.1 and osf.io/ttybt) on empirical data. The di�erence between the
linear slope factors, ∆–, was set at 1.60, while the disturbance of the linear slope
factors was 64.00 in order to represent a small e�ect size ( 1.60Ô

64.00 = .20 Cohen’s d;
(Cohen, 1988)), which is considered a realistic e�ect size for this parameter (see, for
instance, Jacobus et al., 2009).

For this population, we varied the sample sizes in the reference group, the sample
sizes in the focal group, and the estimation settings. The sample sizes for the reference
group were œ {50, 100, 200, 500, 1, 000, 2.000, 5.000, 10.000}, which represents a wide
range of sample sizes commonly specified in the empirical and methodological literature.
The sample sizes for the focal group were 5, 10, 25, and 50. Consequently, the sample
size ratios ranged from 1:1 to 1:2,000. The estimation methods were ML estimation
and Bayesian estimation.

ML estimation was applied with standard errors robust to non-normality and
non-independence of observations (MLR), which suits analyses with repeated measures.
Mplus uses accelerated expectation maximization (EMA) to obtain the ML estimates
(Muthén and Muthén, 2012). Syntax for the analyses is provided in Appendix A.2.
The ML output shows one extra parameter compared to the exact same Bayesian
specification. This “knownclass” parameter, however, is not estimated. Therefore, we
consider the models to be exactly equal.

osf.io/ttybt
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Bayesian estimation was implemented with seven di�erent prior distribution set-
tings for the means of the latent growth factors. Normally distributed informative
priors were specified for the latent growth factor means, because it was considered
most likely that researchers would have knowledge about these parameters before
analyzing their data. Theoretically, however, prior information can be found for all
parameters. The more appropriate the information being included in the prior is,
the more accurate the parameter estimates will be. All user-specified priors were
normally distributed with mean µ0 and variance ‡

2
0 . The population values of the

growth factor means were used as prior means to understand the upper-bound perfor-
mance of Bayesian methods under these modeling circumstances. The prior variances
‡

2
0 ranged from 0.1 (i.e., very informative) to 1010 (i.e., uninformative). Specifically,

‡
2
0 œ {0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 1010}. Default priors were used for the other parameters

in the model. Specifically:

• A normal distribution with a mean of 0 and variance of 1010 for the mean of the
covariate and the regression coe�cients,

• An improper inverse gamma with the shape parameter set at -1, and the scale at 0
for the variance of the covariate and the residuals of the observed variables,

• An improper inverse Wishart with 0 forming the scale matrix, and -4 degrees of
freedom for the covariances and residual variances of the growth factors.

Furthermore, 22 Markov chains were used for the Bayesian analyses to capture
the impact of many di�erent starting values. Note, however, that 22 chains may be
excessive in other modeling contexts due to the length of time it would take to obtain
convergence. We were able to have the large number due to the computational capacity
that was available to us. It is important to note that methods and results described
here using these 22 chains are generalizable to situations requiring fewer chains. In
order to assess convergence, it is recommended that at least two chains are used
(Gelman and Rubin, 1992). The minimum number of iterations was set at 5,000, and
the maximum at 100,000. The first half of the chain was discarded as burn-in, and the
second half was used to construct the posterior (Muthén and Muthén, 2012).

Convergence was imposed by means of the Gelman-Rubin potential scale reduction
factor (PSRF; Gelman and Rubin, 1992). When the PSR was less than 0.05 points away
from 1 for all parameters in the second half of the iterations, the model was considered
to be converged. Subsequently, the first half of the iterations was discarded as a burn-in
phase (Muthén and Muthén, 2012). Syntax for the analyses is provided in Appendix
A.2 and at osf.io/qwf3r. Altogether, the number of cells in the simulation study
was 4 (focal group sample sizes) ◊ 8 (reference group sample sizes) ◊ 8 (estimation
settings: 1 ◊ ML + 7 ◊ Bayes with varying ‡

2
0) = 256.

The simulation was extended with additional Bayesian analyses to investigate
what would happen if a substantial amount of prior information (specified as having a
variance hyperparameter of ‡

2
0 = 0.1, indicating a great deal of precision in the prior)

That is, 73.05, 71.54, 8.13, 6.53, and -2.16 for Interceptnon-users, Interceptusers, Lin.
slopenon-users, Lin. slopeusers, and Quad. slope, respectively

osf.io/qwf3r
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could only be obtained for the reference group, but not for the focal group (with a
variance hyperparameter of ‡

2
0 = 10.0, indicating less precision in the normal prior).

In the focal group ‡
2
0 was set at 10.0 instead of 1010 (the Mplus default) because,

even when prior information is hard to find, researchers and experts are generally able
to estimate its value to some extent. We investigated the e�ects of these conditions
for the largest (i.e., best performing) focal group (n = 50). The sample size of the
reference group was again manipulated for this additional condition examined. Input
for this analysis is located at osf.io/xm3v5

2.4 Evaluation

Since the main interest in multiple group LGM is to compare development between
groups, the growth rate di�erence parameter ∆– was the parameter of interest in the
simulation study. For the Bayesian cells in the design, the median of the posterior
distribution was interpreted as the point estimate. Credible intervals were obtained
by the equal tail method, having tails on both sides that each contain 2.5% of the
posterior distribution (Muthén and Muthén, 2012).

The di�erence parameter ∆– was evaluated in terms of proportion of bias, coverage,
statistical power or non-null detection rates, and estimation problems. The proportional
bias was calculated by dividing the average bias over the analyzed datasets by the
value of the population estimate. A proportional bias lower than .10 was considered
acceptable (Muthén and Muthén, 2002). Coverage is the rate of 95% confidence
intervals (frequentist statistics, e.g., ML estimation) or credible intervals (Bayesian
statistics) that covers the population parameter estimate. For a 95% confidence or
credible interval, coverage should be around the advocated 95%. In the current study,
a minimum level of .90 was considered acceptable. Statistical power and non-null
detection rates were calculated as the percentage of replications in which the 95%
interval for ∆– did not include zero. The acceptable minimum level of statistical
power or the non-null detection rate was considered to be .80 (Muthén and Muthén,
2002). The last criterion concerned estimation problems. Estimation problems arise
when the following occur: (1) negative variances, (2) correlations larger than one, (3)
linear dependencies among more than two latent variables are estimated, or (4) when
the model does not converge. When using ML estimation, Mplus notifies the user
when one of these problems occurred. The proportion of datasets for which Mplus
produced warnings in this respect was used as an evaluation of estimation problems.
Bayesian estimation cannot result in illegitimate estimates with the prior distributions
used in this study. Non-convergence, however, can occur, and can be detected by
warnings and/or by visual inspection of the trace plots. Therefore, for every cell in
the simulation design, two sets of trace plots were randomly selected and inspected
for convergence.

osf.io/xm3v5
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2.5 Results

2.5.1 Maximum Likelihood Estimation

Figure 2.2 shows the ML results in terms of proportion of warnings, coverage, statistical
power, and proportional bias for the four focal group sample sizes separately. As can
be seen, the proportion of bias was adequate for all combinations of sample sizes,
except for an focal group sample size of 5 combined with a reference sample of 100
(Figure 2.2a). Coverage was in general lower than .95, but always su�cient when the
focal sample contained at least 25 participants (Figure 2.2c, 2.2d). With sample sizes
in the focal group of 5 and 10, reference group sample sizes at both extreme ends did
not cover the population value often enough in the 95% confidence intervals (coverage
< .90), even though the average relative bias over datasets was acceptable (Figure
2.2a, 2.2b). Truly worrisome, however, were the statistical power and the proportion of
warnings. Even with 10,000 participants in the reference group, the power to detect a
small e�ect was lower than .50 for all focal groups, while a minimum of .80 is pursued.
The proportion of warnings with a reference group sample size of 50 ranged from .73
to .88. These warnings concerned illegitimate estimates, which make the results of
the analysis unreliable. Examples of warnings that were obtained for ML models with
estimation issues were as follows:

THE MODEL ESTIMATION TERMINATED NORMALLY

WARNING: THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT POSITIVE DEFINITE.
THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR AN OBSERVED
VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO OBSERVED
VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO OBSERVED VARIABLES.
CHECK THE RESULTS SECTION FOR MORE INFORMATION.

WARNING: THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT POSITIVE
DEFINITE. THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE FOR A
LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN TWO LATENT
VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO LATENT VARIABLES.
CHECK THE TECH4 OUTPUT FOR MORE INFORMATION.

2.5.2 Bayesian Estimation

With Bayesian estimation, bias and coverage were acceptable for every cell of the
simulation design. Plots for all cells can be found at osf.io/s59cz. In addition,
Bayesian estimation showed decent convergence. As a result, the remaining aspect of
interest was statistical power. Figure 2.3 shows for all four focal group sample sizes
(i.e., n = 5, 10, 25, and 50) how many participants are in the reference group and
how much prior information is necessary to obtain satisfactory non-null detection
rates. With uninformative priors imposed on all parameters (i.e., ‡

2
0 = 1010), non-null

detection rates were insu�cient, regardless of the sample size in the reference group.
The same held when the variances of the priors for the latent growth factor means

osf.io/s59cz
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Fig. 2.2: Results for ML estimation by focal group sample size. On the x-axis, the size of
the reference group increases. From top to bottom, the static horizontal lines represent: (1)
the minimum acceptable value for coverage (i.e., .90), (2) the minimum acceptable value for
statistical power (i.e., .80), and (3) the maximum acceptable value for proportional bias (i.e.,
.10).

were decreased to 5.0. An exploration of the non-null detection rate with a focal group
of 100 and the prior variance of the latent growth factor means at 5.0 showed an
improvement in the non-null detection rate, but still about 10,000 participants in the
reference group were needed to acquire a non-nul detection rate close to .80. Prior
variances as specific as 0.1, on the other hand, resulted in a non-null detection rate of
1.0 for every cell.

2.5.3 Unbalanced Prior Information

The simulation results presented in the previous section show that an focal group of 50
participants combined with a prior variance is 0.1 can lead to an optimal situation in all
respects assessed (Figure 2.3). Figure 2.4 shows that when prior information is scarce
for the focal group (‡2

0 = 10), power is an issue again. Additional analyses showed
that no matter how much the prior variance in the reference group was decreased, a
satisfactory non-null detection rate could not be achieved as long as the prior variance
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Fig. 2.3: Non-null detection rate for Bayesian estimation by focal group sample size. On the
x-axis, the size of the reference group increases. The y-axis represents the non-null detection
rate. The static horizontal line represents the minimum acceptable value for the non-null
detection rate (i.e., 0.80). The remaining lines reflect the results for varying ‡

2
0 .

in the focal group was 10. Due to these clear results, the e�ect of unbalanced prior
information was not further investigated for cells with focal groups smaller than 50.

2.6 Conclusion

The aim of the simulation study was to investigate lower-bound sample size issues in a
multigroup LGM context, especially when one group is much smaller than the others.
We set up the simulation in this way in order to compare and establish sample size
requirements to evaluate a small di�erence in development between groups for ML
and Bayesian estimation when one of the groups has a sample size not larger than 50.

The results showed that ML estimation has issues with statistical power when at
least one of the groups is not larger than 50. Moreover, with ML estimation, analyses
based on small sample datasets generally cannot be properly interpreted because of
nonpositive definite matrices that yield inadmissible estimates.
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Fig. 2.4: Results for Bayesian estimation with unbalanced prior information. ‡
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0 for latent

growth factors in reference group = 0.1. ‡
2
0 for latent growth factors in focal group = 10.

focal group n = 50.

By adopting Bayesian estimation, the issue of non-interpretable output disappears
and consequently smaller samples can be analyzed. Bayesian inference with uninfor-
mative as well as minimally informative priors, however, has non-null detection rate
issues similar to ML estimation. Specifically, even comparison groups with 10,000 par-
ticipants do not yield satisfactory non-null detection rates for a small e�ect. To obtain
a satisfactory non-null detection rate in the context of limited small and unbalanced
sample sizes, Bayesian estimation is necessary in combination with the availability of
very specific prior information. This may seem trivial to those who are familiar with
the Bayesian concept, but the current simulation study provided additional insight
to the e�ect of prior information by showing the consequences of specific degrees of
informativeness.

Note, however, that our use of an empirical model with empirical population values
limits the direct applicability of the simulation results to other research situations.
The simulation results are only directly indicative for other researchers under specific
circumstances. The statistical model needs to be equal (e.g., a latent growth model
including a time-invariant covariate, a multiple group confirmatory factor model with
a covariate, or a multiple indicators multiple causes model with the groups as a
covariate), the expected e�ect size small, and the growth rate di�erence needs to
be comparable or proportional after taking the impact of the covariate into account.
When the growth rate is proportional, the impact of the prior variances is proportional
as well. If these circumstances do not hold, the presented simulation results are mainly
useful as inspiration for new simulation e�orts.

As was shown by the simulation study with unbalanced prior information, highly
informative priors are particularly necessary for the focal group. To be able to specify
such informative priors, the available prior information must be very specific and
convincing. This, however, may be seldom feasible because of the exceptionality of the
group. In such a situation, we advise researchers to publish their updated estimates
and data nevertheless. Such a publication provides a future researcher on the topic
with more prior information, and over time, the amount of prior information can
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be su�cient to draw conclusions about the e�ect under study. Thus, when separate
analyses cannot obtain su�cient power to make inferences, cumulative e�orts of
researchers can overcome the issue.

2.6.1 Cautionary Points Regarding Bayesian Estimation

To avoid misinterpretations of this study, we hereby provide a disclaimer. The goal
of Bayesian analyses with informative priors is to make optimal use of all available
information. Accordingly, the simulation study shows the relation between the amount
of prior information and results in terms of estimation and the non-null detection rate.
With this information, researchers can observe the relation between the specificity of
prior information and other factors such as estimation problems, bias, non-null detection
rate, and cover- age. This paper is not a demonstration of how prior distributions
should be manipulated to secure statistically significant results: This would not be an
ethical use of the information, and the exact results may vary between study variables
and models. As shown in Zondervan-Zwijnenburg et al. (2017a) , prior knowledge
has to be acquired systematically and specifications of prior distributions have to be
justified. Moreover, to promote transparency, we advise to demonstrate the impact of
other priors on the results by means of a sensitivity analysis (see also Depaoli and Van
de Schoot, 2017). We believe that the manipulation of priors to obtain a “desirable”
result would fall under unethical research practices.

Another cautionary note should be made on the use of default priors for variance
parameters with small samples. Variance and disturbance parameters were not the
focus of this study, but it has been shown, for example, by McNeish (2016a) and Van de
Schoot et al. (2015) that these estimates can be severely biased with uninformative
priors.

2.6.2 Final Recommendations

Based on these findings, we recommend researchers with focal groups with fewer than
200 participants to conduct a simulation study in order to evaluate the impact of the
small sample on estimation issues, bias, coverage, and non-null detection rate. When
maximum likelihood estimation cannot generate proper output under the circumstances
of interest, we suggest to obtain prior information. Zondervan-Zwijnenburg et al. (2017a)
provides guidelines on collecting and including prior information. If su�ciently precise
prior information can be acquired, the data can be analyzed. If the researcher is
not able to meet the requirements, simpler models (e.g., descriptive statistics, case
studies), waiting until more prior information and participants become available (e.g.,
by following Google Scholar Alerts, RSS feeds, and reapproaching schools in a new
academic year), or conducting the analysis to contribute to cumulative science without
making inferences, are alternative ways to deal with the data.
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A.1 Population parameters

The text below shows the input file used to generate the datasets for the simulation
study for the specific case with 50 participants in the reference group and 5 in the
focal group. For other group specifications, the nobs syntax was changed accordingly.
The code is annotated with text after the exclamation mark.

The covariate is simulated as a count variable, because this fitted the empirical
data best. It was analyzed as a normally distributed variable though, because (1) the
scale of an exogenous variable does not a�ect the regression coe�cients, and that
is important, (2) the predictor itself was not the variable of interest, (3) Bayesian
analysis in Mplus (7.1) cannot handle count variables, and Mplus provides a lot of
possibilities for our analyses that are more important. (4) This is common practice in
the social and behavioral sciences.

The variance of the covariate, however, was allowed to di�er between groups,
because this fitted the empirical data best. The empirical analysis including a
quadratic factor had a better fit than without the quadratic factor (see the files named
Bayes2group.out and Bayes2groupISonly.out respectively at osf.io/gjzu8; DIC
= 6861.396 vs 6892.445, BIC = 6948.434 vs 6960.688). We constrained Q over groups
so that the di�erence between groups is represented in the di�erence between the
linear slopes.

MONTECARLO:
names = y1-y4 qft; !variable names
count = qft; !count variable
generate = qft(c); !create count variable
ngroups = 2; !2 groups
nobs = 50 5; !50 in reference group, 5 in focal
nreps = 1000; !produce 1000 datasets from the population input
seed = 4533;
repsave = all;
save = mc_5_50_*.dat; !name for data files

ANALYSIS:
type = mixture;
algorithm = integration;
processors = 2;

osf.io/gjzu8
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MODEL POPULATION:
%OVERALL% !overall set up with group invariant and g=1 values
i s q | y1@0 y2@1 y3@2 y4@3; !Intercept, Linear Slope, Quadratic Slope LGM syntax

i ON qft*-0.101; !Beta_141
s ON qft*-0.228; !Beta_24
q ON qft*0.131; !Beta_34
i WITH s*-53.669 q*12.342; !covariance I with LS Psi_21, I with QS Psi_312
s WITH q*-14.052; !covariance LS with QS Psi_32
[qft*0.313]; !Quantity frequency alcohol use, count parameter lambda3
[i*73.050 s*8.125 q*-2.161]; !means I (alpha_1^1), LS (alpha_2^1), QS (alpha_3)
i*67.887; s*64 q*3.958; !residual variances I (zeta_1), LS (zeta_2), QS (zeta_3)
y1*52.956 y2*64.049 y3*55.481 y4*19.390;

!residual variances y_1^1-y_1^1 (epsilon_1^1-epsilon_4^1)

%g#1% !values reference group (g=1)
[qft*0.313];
[i*73.050 s*8.125 q*-2.161];

%g#2% !values focal group (g=2), overwrite overall set up
[qft*2.704];
[i*71.541 s*6.525 q*-2.161];

Population values for — are based on a Bayesian analysis with default settings of
the latent growth model as depicted in Figure 3.1. The .inp syntax and .out output
file named Bayes equal q var regress are provided at osf.io/gjzu8. Population
values for the covariances, residual variances, and intercepts are based on a Bayesian
analysis with default settings, but with the regression parameters estimated for both
groups separately. The .inp syntax and .out output file named Bayes equal q and

equal var are provided at osf.io/gjzu8.
Population values for the count variable are based on the results of a non-positive
definite ML analysis of the latent growth model, because only with these settings
Mplus could estimate the values for a count variable. The .inp syntax and .out output
file named ML all par are provided at osf.io/gjzu8.
Algorithm = integration was necessary to create the count data and to regress the
latent variables on the count variable. With mixture (i.e., knownclass) analyses, Mplus
uses EMA optimization. With a grouping specification, Mplus does not do this. Hence,
the results can di�er. https://osf.io/gjzu8/

A.2 Analyses

Both syntax files concern the simulated data for the cell with 5 participants in the
reference group. Logically, syntax for other cells included di�erent datafile lists.

A.2.1 Maximum likelihood estimation

For ML estimation, Algorithm = integration was necessary to obtain convergence.

osf.io/gjzu8
osf.io/gjzu8
osf.io/gjzu8
https://osf.io/gjzu8/
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Mplus input

DATA: FILE = "mc_5_50_list_l.dat";
TYPE = MONTECARLO;
VARIABLE: names = QFT Y1 Y2 Y3 Y4 G;

classes = cg(2);
knownclass is cg(g=1 g=2);

ANALYSIS:
type = mixture;
algorithm = integration;
processors = 4;

MODEL:

%OVERALL%
i s q | y1@0 y2@1 y3@2 y4@3;

i ON qft*-0.101;
s ON qft*-0.228;
q ON qft*0.131;

i with s*-53.669 q*12.342;
s with q*-14.052;

[qft*0.313];
qft;

[i*73.050 s*8.125 q*-2.161];
i*67.887; s*64 q*3.958;

y1*52.956 y2*64.049 y3*55.481 y4*19.390;

%cg#1%
i s q | y1@0 y2@1 y3@2 y4@3;

[qft*0.313];
qft;
[i*73.050 s*8.125 q*-2.161] (I1 S1 Qg);

%cg#2%
i s q | y1@0 y2@1 y3@2 y4@3;

[qft*2.704];
qft;
[i*71.541 s*6.525 q*-2.161] (I2 S2 Qg);

MODEL CONSTRAINT:
NEW(diff_s)*1.6;
diff_S = S1 - S2;

OUTPUT: TECH9;
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A.2.2 Bayesian estimation

The syntax below concerns the analyses in which the informative priors had a variance
of 1.0. Other cells had a di�erent value for the variance of the prior under MODEL
PRIORS.

Mplus input with ‡
2
0 = 0.1

DATA: FILE = "C:/Users/Marielle/Documents/S5/mc_5_50_list.dat";
TYPE = MONTECARLO;
VARIABLE: names = QFT Y1 Y2 Y3 Y4 G;
classes = cg(2);
knownclass is cg(g=1 g=2)

ANALYSIS: type = mixture;
ESTIMATOR = BAYES;
BCONVERGENCE = .05;
CHAINS=22;
PROCESSORS=22;
BITERATIONS=(5000) 100000;

MODEL:

%OVERALL%
i s q | y1@0 y2@1 y3@2 y4@3;

i ON qft*-0.101;
s ON qft*-0.228;
q ON qft*0.131;

i with s*-53.669 q*12.342;
s with q*-14.052;

[qft*0.313];
[i*73.050 s*8.125 q*-2.161];
i*67.887; s*64 q*3.958;

y1*52.956 y2*64.049 y3*55.481 y4*19.390;

%cg#1%
i s q | y1@0 y2@1 y3@2 y4@3;
[qft*0.313];
[i*73.050 s*8.125 q*-2.161] (I1 S1 Qg);
qft;

%cg#2%
i s q | y1@0 y2@1 y3@2 y4@3;
[qft*2.704];
qft;
[i*71.541 s*6.525 q*-2.161] (I2 S2 Qg);
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MODEL PRIORS:
I1~N(73.050,0.1);
S1~N(8.125,0.1);

I2~N(71.541,0.1);
S2~N(6.525,0.1);

Qg~N(-2.161,0.1);

MODEL CONSTRAINT:
NEW(diff_s)*1.6;
diff_S = S1 - S2;

OUTPUT: TECH9;
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