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Abstract 

In small sample contexts, Bayesian estimation is often suggested as a viable alternative to 

frequentist estimation, such as maximum likelihood estimation. Our systematic literature 

review is the first study aggregating information from numerous simulation studies to present 

an overview of the performance of Bayesian and frequentist estimation for structural equation 

models with small sample sizes. We conclude that with small samples, the use of Bayesian 

estimation with diffuse default priors can result in severely biased estimates – the levels of 

bias are often even higher than when frequentist methods are used. This bias can only be 

decreased by incorporating prior information. We therefore recommend against naively using 

Bayesian estimation when samples are small, and encourage researchers to make well-

considered decisions about all priors. For this purpose, we provide recommendations on how 

to construct thoughtful priors.  
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Bayesian versus Frequentist Estimation for Structural Equation Models in Small 

Sample Contexts: A Systematic Review 

The use of Bayesian estimation is on the rise in many scientific fields (König & van de 

Schoot, 2017; J. K. Kruschke, Aguinis, & Joo, 2012; Rietbergen, Debray, Klugkist, Janssen, 

& Moons, 2017; Rupp, Dey, & Zumbo, 2004; van de Schoot, Winter, Ryan, Zondervan-

Zwijnenburg, & Depaoli, 2017),  and during the last few decades there has been a “steep 

increase” in the number of “theoretical, simulation and application papers implementing 

Bayesian SEM [Structural Equation Modeling]” in psychology (van de Schoot et al., 2017, p. 

231). The rise in both applications and methodological studies of Bayesian estimation might 

be due to the availability in popular software packages and some advantages that Bayesian 

estimation possesses over its frequentist counterpart, such as the flexibility to include model 

uncertainty, and to estimate models that are too complex or too computationally demanding 

for frequentist estimation (see e.g., Kaplan, 2014, pp. 297–290; van de Schoot et al., 2017; 

Wagenmakers, Lee, Lodewyckx, & Iverson, 2008).1 

Another popular reason to choose Bayesian estimation is that, unlike frequentist 

methods (e.g., maximum likelihood (ML) estimation), it does not rely on asymptotic theory 

(see e.g., Gelman, Carlin, & Stern, 2013, pp. 83–97; Kaplan, 2014, pp. 285–286). It is often 

shown that in the context of SEM for small sample sizes, in relation to the complexity of the 

model, frequentist estimation often results in nonconvergence, inadmissible parameter 

solutions, and inaccurate estimates. All of these issues might be circumvented by using 

Bayesian estimation (see e.g., Muthén & Asparouhov, 2012; Wagenmakers et al., 2008). This 

is a welcoming feature of Bayesian estimation, especially in the social sciences where it can 

be challenging to collect enough data due to naturally small populations (e.g., Egberts et al., 

2016), hard to access target groups (e.g., Coleman et al., 2002), or financial constraints may 

exist (e.g., van Lier et al., 2017).2 
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 Recommendations to use Bayesian over frequentist estimation in small sample 

contexts are common in the literature. For example, Rupp et al. (2004) mentioned that 

“Bayesian parameter estimation is more appropriate than ML estimation for smaller sample 

sizes, because the former do not rely on asymptotic results that are typically not satisfied with 

psychometric data except in large-scale settings.” (p. 446). Kruschke et al. (2012) advised 

that “Bayesian methods can be used regardless of the overall sample size or relative sample 

sizes across conditions or groups.” (p. 743). Such statements can create the impression that 

using Bayesian estimation universally solves small sample problems. Although several 

textbooks on Bayesian estimation stress the important role of prior distributions when 

Bayesian estimation is used with small samples (e.g., Gelman et al., 2013, p. 88; Kaplan, 

2014, p. 291; McElreath, 2016, p. 31), in practice prior distributions are often not carefully 

chosen, and most empirical researchers rely on default software settings (see e.g., König & 

van de Schoot, 2017; McNeish, D., 2016b; van de Schoot, Schalken, & Olff, 2017; van de 

Schoot, Winter, et al., 2017). Popular software programs, such as: Mplus (L. K. Muthén & 

Muthén, 2017); SPSS (IBM Corp., 2017); JASP (JASP team, 2018); or the R package 

blavaan (Merkle & Rosseel, 2018), offer Bayesian estimation with diffuse default prior 

distributions. This permits a naive use of Bayesian estimation, which entails that software 

defaults (e.g., Mplus default priors) or generic rules-of-thumb (e.g., the Inverse Gamma 

(0.01, 0.01) for variance parameters in multilevel models) are used to specify prior 

distributions. Naive priors should not be confused with noninformative priors. Some diffuse 

default priors can act as very informative priors when the sample size is small (see e.g., 

Gelman, 2006; McNeish, 2016b). In contrast, thoughtful priors incorporate previous beliefs 

about parameters and are adjusted to the specific research situation. These prior distributions 

could be based on previous studies, meta-analyses or expert opinions and are applicable only 

to a specific study. In a thoughtful way of using Bayes, flat or software default priors can also 
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be used, as long as arguments are provided why this is a suitable prior for this specific 

parameter, that is, a thoughtful choice is made about the prior distributions. A last category 

are priors based on the data itself, so-called data dependent priors. With data dependent 

priors, the model is first fit with a frequentist method (e.g., ML). The estimates of the 

frequentist estimation are then used as hyperparameters for the prior distributions, often in 

combination with very large variances to represent the uncertainty about the prior distribution 

(see e.g., Darnieder 2011).3  

Goals of the Study 

  In the last decade, many simulations studies have investigated the performance of 

Bayesian estimation for SEM in small samples and compared its performance to frequentist 

estimation methods. The goal of our systematic review is twofold. The first goal is to provide 

a comprehensive overview of the performance of Bayesian estimation for SEMs with small 

samples in comparison to frequentist estimation. Therefore, we report details about the 

conditions investigated in the included simulation studies, which sample sizes were defined 

as small by the authors of the studies, and which prior distributions were used. In addition, 

we aggregate information about coverage, power, and relative bias from all cells across the 

included simulation studies. Second, we provide recommendations for researchers regarding 

analyzing small data sets and how to specify thoughtful priors.  

Organization of the Paper   

The remainder of the paper is structured as follows: first, the methods used to conduct 

the systematic review are described, followed by a description of the included studies and the 

general performance of the investigated estimation methods for SEM with small samples. In 

addition, we collected and graphically present all the reported coverage, power and relative 

bias estimates for all parameters from all cells as reported in the included studies. We end 

with conclusions, a discussion of limitations, and recommendations. 



BAYESIAN VS. FREQUENTIST SEM FOR SMALL SAMPLES  4 
 

 

Methods 

Inclusion and Exclusion Criteria 

We included papers in which a simulation study was used to investigate and compare the 

performance of Bayesian estimation to frequentist methods in structural equation models with 

a small sample size. We only included peer-reviewed papers in the field of social sciences. 

Non-English references were excluded, as well as books, book chapters, conference talks and 

software manuals. We used the following definitions of the inclusion criteria: 

o Simulation study. Multiple replicated datasets were analyzed, and results were 

summarized for all simulated data sets. 

o Bayesian estimation was compared to frequentist estimation methods. The 

performance of Bayesian and frequentist estimation was investigated for the exact 

same model, so that the results can be compared across the two estimation methods. 

o Structural equation models. Models of interest fall under the umbrella of structural 

equation models including mediation, CFA, latent growth, multilevel, and mixture 

models. Network analysis, machine learning, meta-analysis and item response theory 

were excluded. 

o Small sample size. The original authors stated that at least one of the sample sizes in 

the simulation study represent a small sample size for their specific model.4 Small 

sample conditions must have been reported explicitly; aggregated results including 

small sample conditions were excluded.  

Search Strategy 

Three approaches containing six searches, were conducted to identify possibly relevant 

papers, as displayed in Figure 1. As the first approach, we used the simulation study papers 

on small samples which were identified by the systematic review of van de Schoot et al. 

(2017) on the use of Bayesian estimation in psychology. As a second approach, we sent 
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messages to all subscribers of the mailings lists SEMNET and JISC Multilevel of Listserv 

16.0, and posted a message on the online platform ResearchGate. The abstracts of the papers 

identified from these two approaches (Searches 1-5, see Figure 1) were screened and when 

these met the inclusion criteria, the full-text version was examined. When the inclusion 

criteria were still met, the paper was included in the qualitative synthesis and in the next 

search phase, in which the references from the paper were examined as were papers that cited 

the included paper. Scopus was used to identify the references of the relevant papers, as well 

as the papers that cited the relevant papers (when the paper was not available in Scopus, 

Google Scholar was used). These steps were repeated until no new papers were identified. 

For the first three searches, references that did not meet all our inclusion criteria but did meet 

the criteria about simulation studies, Bayesian estimation and small samples, were included in 

the upcoming searches because these papers could still identify relevant references and 

citations. As a third approach, a final search (Search 6) was carried out using Scopus to 

identify relevant studies that were published after 2014, because the study of van de Schoot et 

al. (2017), which was used as the first approach, included studies published until 2015. The 

exact search strings can be found in Supplemental File S1. The abstracts, followed by the 

relevant full-texts of the identified records, were screened using the aforementioned inclusion 

and exclusion criteria. 

  The first author carried out the screening and as a quality check, a random sample of 

10% of abstracts and 20% of full-texts were reviewed by each of the three co-authors, which 

resulted in very few discrepancies. Disagreements were discussed until the authors agreed. In 

the end, no additional studies were included in the systematic review after discussion. In 

Figure 2, a summary of the flow charts can be found following Preferred Reporting Items for 

Systematic reviews and Meta-Analyses (PRISMA; Liberati et al., 2009; Moher, Liberati, 

Tetzlaff, Altman, & The PRISMA Group, 2009). More details of the search are provided 
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online (Supplemental File S1) as well as all identified references and the reason for exclusion 

(Supplemental File S2). Additionally, separate flowcharts for Searches 1 to 6 are available in 

Supplemental File S3. 

Results Search Strategy 

  A total of 32 studies, described in 27 papers and written by 24 unique groups of 

authors, met all inclusion criteria and were included in the qualitative synthesis. The 

following SEMs were investigated in these studies: mediation model (n = 6), CFA (n = 3), 

latent growth model (n = 6), multilevel model (n = 12), autoregressive model (n = 1), and 

mixture model (n = 4). Characteristics of the 32 included studies can be found in Table 1. In 

addition, we collected coverage, power and relative bias for all reported parameters for all 

cells as reported in the studies.5 We graphically present these data in Figures 3 to 5.  

Bayesian vs. Frequentist Methods in Included Studies 

In the current paper, we distinguish between three types of frequentist estimation methods 

and three types of prior settings for Bayesian estimation. For the frequentist estimation 

methods, we differentiate between maximum likelihood (ML), restricted maximum 

likelihood (REML) and least squares (LS). The ML category subsumes robust ML and full 

information ML. In the REML category, REML with and without Kenward-Roger correction 

are included (for more information, see Kenward & Roger, 1997, 2009; McNeish, 2016a). 

Note that REML with Kenward-Roger correction is often referred to as a “small sample 

correction” (see e.g., McNeish & Stapleton, 2016, p. 4). Finally, robust weighted least 

squares or unweighted least squares, all comprise the LS category.  

Furthermore, a distinction is made between three types of prior settings for Bayesian 

estimation. We use the terms: naive (BayesN), thoughtful (BayesT) and data dependent 

(BayesD) priors. In the current study, the prior setting is categorized as BayesT when 

information is included in at least one prior distribution. We do not intend to imply that 
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studies using BayesN of BayesD are necessarily lacking though as these approaches are 

justifiable under some circumstances. Rather, this set of terminology is intended to imply that 

additional thought was required to specify custom prior distributions instead of relying on 

defaults, generalized suggestions, or the data to create priors. In Appendix Table A1, the 

specified prior distributions from all included simulation studies are presented. 

Note that within the three Bayesian categories, still different levels of informativeness 

can occur, as well as different combinations of naive, thoughtful and data dependent priors. 

However, the paper would not benefit from creating subcategories in which only the exact 

same level of informativeness and combinations of priors occur, as almost each study would 

end up in a category on its own. Our view is that the three categories we selected are specific 

enough to discriminate between different types of prior distributions while also allowing for 

broad conclusions to be readily interpretable. 

  In the next section, we describe how Bayesian estimation (BayesN, BayesT, BayesD) 

performed in comparison to frequentist estimation (ML, REML, LS) in the included studies. 

We realized that the results in terms of performance of estimation methods, were generally 

independent of the model. Therefore, we discuss the results across all models together and 

focus on model specific exceptions. Supplemental Table S6 shows which studies compared 

which permutations of methods (e.g., which studies compared BayesT to frequentist 

estimation), and Supplemental Tables S7-S10 include the raw conclusions regarding the 

performance of the methods in each of the studies.  

Results 

Overall Coverage, Power and Relative Bias 

The reported values of coverage, power and relative bias for the sample sizes that were 

defined as small by the original authors are graphically displayed in boxplots in Figures 3 to 

5. On the x-axes, the different estimation methods are shown together with the number of 
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reported values available for this estimation method. Note that coverage, power and relative 

bias are frequentist properties, but are still often used to evaluate and compare both 

frequentist and Bayesian estimation methods (Berger & Bayarri, 2004; van Erp, Mulder, & 

Oberski, 2018). With the exception of 2 studies, all included simulation studies used one or 

multiple of these evaluation criteria and the results are combined to show the distribution of 

the coverage, power and relative bias levels for the varying estimation methods.6 We divided 

parameters of interest into two categories: structural parameters (e.g., latent means, 

regression coefficients) and variance parameters (e.g., latent variances, covariances, residual 

variances). Note that the coverage and power for the variance parameters are not often 

investigated in the included studies, as those are less often the parameter of interest in 

substantive studies than structural parameters (see Dedrick et al., 2009) and therefore these 

results are discussed in text but not presented in figures. In Supplemental Table S5, the 

minimum, maximum and quartile values of the coverage, power and relative bias can be 

found for each estimation method and parameter type. Note that the number of reported 

values for REML and LS is relatively small. As we have not focused explicitly on these 

methods, we are not able to draw any strong conclusions based on our results for REML or 

LS.  

  Coverage. In Figure 3, the results for the coverage of structural parameters can be 

found for the small sample sizes. The dashed grey lines represent the desirable coverage 

interval of 92.50 and 97.50 (Bradley, 1978). For the three Bayesian estimation methods, 

90.97% of the values are at or above the desirable coverage of 92.50. BayesN and BayesT 

perform especially well: respectively 93.33% and 97.56% of coverage values are at or above 

92.50. For BayesD, 64.94% are at or above 92.50. The three frequentist methods show more 

under-coverage than the Bayesian methods: only 52.55% of the values are above 92.50, 

although there are large differences between the three methods. For ML, 52.94% are at or 
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above the desired coverage level, for REML 87.88% and for LS only 2.78%. Baldwin and 

Fellingham (2013) explain that coverage can be lower for frequentist methods because the 

sampling distribution of the parameter is assumed to be normal, an assumption which is often 

violated when samples are small. Hox et al. (2014) continue that because of biased standard 

errors for ML estimation, as a consequence of small sample sizes, ML resulted in worse 

coverage rates than Bayesian estimation. Using REML can improve the standard error 

estimates (for more information, see McNeish, 2017). This can explain why REML performs 

better than the other frequentist methods in terms of coverage.  

 The coverage levels for variance parameters for BayesT and LS are hardly 

investigated (number of data points = 11 and 6, respectively), and therefore no conclusions 

are drawn for these estimation methods based on these results. For ML and REML, 23.91% 

and 44.74% respectively, of the reported coverage values are at or above 92.50. Bayesian 

estimation performs better: for BayesN and BayesD, 65.16% and 74.0% of the reported 

coverage values are at or above 92.50.  

Overall, Bayesian estimation lead to better coverage rates for both parameter 

types than the frequentist methods.  

  Power. In Figure 4, the reported power levels for the structural parameters are shown 

for small sample sizes. The dashed grey line represents the desirable 0.80 power level. A 

large part of the reported power levels of the structural parameters is below 0.80. For 

BayesN, 85.58% are below 0.80, for BayesT 51.29%, for BayesD 78.79%, for ML 90.65%, 

for REML 87.20%, and for LS 87.20%. Only when BayesT was used, and thus prior 

information was included, power of 0.80 was reached in a substantial portion (48.71%) of the 

reported cases. In studies in which power levels of 0.80 or higher were reported when using 

BayesT, it is explained that power increased when the variance hyperparameter of the prior 

distribution became smaller, that is, when specific prior information is included (Miočević, 
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MacKinnon, & Levy, 2017; Price, 2012; van de Schoot, Broere, Perryck, Zondervan-

Zwijnenburg, & van Loey, 2015; Zondervan-Zwijnenburg, Depaoli, Peeters, & Van de 

Schoot, 2018). Thus, using BayesT increased chances of reaching a power level of 0.80 or 

higher. For the variance parameters, the power levels are hardly investigated in the included 

studies (number of data points varies between 0 and 39 for the estimation methods). 

  Relative bias.  In Figure 5, the relative bias for the structural parameters (Figure 5a) 

and variance parameters (Figure 5b) is presented for the small samples. The dashed grey lines 

represent the desirable ±10% level of bias (Hoogland & Boomsma, 1998). For both 

parameter types, the median of the distributions is within the 10% interval for all estimation 

methods, except the median of the distribution of LS for the structural parameters (Figure 5a), 

and the median of the distribution of ML estimation for the variance parameters (Figure 5b). 

For structural parameters, the distributions of BayesN, BayesT, BayesD, ML and REML tend 

to equally spread around the 10% interval, while the distribution of LS is skewed upwards. 

For the variance parameters, the distributions of BayesN, BayesT and LS are skewed 

upwards, the distribution of ML is skewed downwards, and the distributions of BayesD and 

REML tend to equally spread around the 10% interval. Overall, the estimation of variance 

parameters seems to be more problematic than the estimation of structural parameters. 

  For both parameter types and all estimation methods, there are outliers reported. 

Interestingly, the highest outliers were reported for the structural parameters, while in general 

the estimation of structural parameters seemed to be less problematic than the estimation of 

variance parameters. Note that the most extreme outliers are not visible in the boxplots, as the 

y-axes range between -100% and + 100% bias.7 For BayesN, BayesT, BayesD, ML, REML 

and LS, respectively 54.89%, 71.74%, 41.83%, 66.82%, 78.13% and 44.23% of the reported 

values lie within the ±10% cutoff values for the structural parameters (Figure 5a). From the 

estimation methods, the use of REML and BayesT led to most structural parameter estimates 
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within the ten percent boundary, followed by ML, BayesN, LS and BayesD. For the variance 

parameters, it is reported that for BayesN, BayesT, BayesD, ML, REML and LS, respectively 

45.35%, 27.72%, 69.52%, 35.83%, 70.63% and 63.33% of the values lie within the ±10% 

cutoff values for the variance parameters (Figure 5b). From the estimation methods, the use 

of REML and BayesD resulted in the most variance parameter estimates within the ten 

percent boundary, followed by LS, BayesN, ML and BayesT. An explanation for the shift in 

position for BayesT is that thoughtful prior information was more often included for 

structural parameters than variance parameters. Note that these percentages can give a 

general idea of the amount of reported values within the 10% interval, but that these 

percentages are obviously influenced by the extreme outliers. 

  Overall, when looking at the median of the distributions, the performance of BayesN, 

BayesT, BayesD and ML is acceptable for the structural parameters. For BayesN, BayesT 

and ML, the performance is of poorer quality for the variance parameters, although the 

medians are still within the 10% interval for BayesN and BayesT. For BayesD, the 

performance is better for the variance parameters than the structural parameters. REML 

seems promising for both parameter types, although there are only 32 and 41 values reported 

for the structural and variance parameters respectively. Not one estimation method 

outperformed all others for both parameter types in terms of relative bias, when considering 

the percentage of reported values within the 10% cut-off values and the reported outliers.  

 Conclusions about overall coverage, power and relative bias. To conclude, 

switching to Bayesian estimation when the sample size is small, does not automatically solve 

small sample size problems in terms of bias. When looking at the median of the distributions, 

the performance of BayesN, BayesT, BayesD looks good for both parameter types, although 

extreme outliers can occur. Higher levels of bias were found when variance parameters were 

estimated than when structural parameters were estimated. In terms of coverage and power, 
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Bayesian estimation shows better results than frequentist estimation. For small samples, the 

desirable power level was only reached for a substantial amount of cases when BayesT was 

used. Bayesian estimation results in coverage mainly at or above the desired coverage level, 

while frequentist estimation mainly leads to values below the desired coverage level.  

  In the next sections, we describe the performance of Bayesian and frequentist 

estimation in more detail based on the results of the included simulation studies.  

BayesN vs. Frequentist Methods 

 In 22 out of 32 studies, BayesN is investigated and compared to frequentist estimation. In the 

BayesN category, prior distributions are based on software defaults, general literature 

recommendations, and the use of other default priors. From the 22 studies, 5 studies reported 

that BayesN performs better than frequentist methods (Hox et al., 2014; Hox, van de Schoot, 

& Matthijsse, 2012; Stegmueller, 2013; Tsai & Hsiao, 2008; van Erp et al., 2018), and 3 

studies reported that frequentist methods perform better (Chen, Zhang, & Choi, 2015; 

Depaoli & Clifton, 2015; Holtmann, Koch, Lochner, & Eid, 2016). The remaining 14 studies 

reported that both estimation methods performed equally or that the conclusion depended on 

other factors. Although one of these 14 studies reported that both frequentist and BayesN 

methods lead to minimal bias in the parameter estimates (Yuan & MacKinnon, 2009), 6 of 14 

studies reported that both methods resulted in poor parameter estimates (Browne & Draper, 

2000; 2006; Depaoli, 2013; 2 simulation studies in McNeish, 2016a; van de Schoot et al., 

2015). The remaining studies show that the conclusion depends on: the choice of the naive 

prior distribution (McNeish, 2016b; McNeish & Stapleton, 2016; e.g., McNeish and 

Stapleton (2016) show that BayesN with Inverse Gamma or half-Cauchy prior distributions 

for the variance components in a multilevel model perform better in comparison to the other 

BayesN option with a uniform prior distribution); the choice of the frequentist estimation 

method to which the BayesN is compared (Koopman, Howe, Hollenbeck, & Sin, 2015; 
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McNeish, 2016b; Miočević et al., 2017; e.g., McNeish (2016b) concludes that REML with 

Kenward-Roger correction performs better than ML and BayesN); or that the conclusions 

depend on the interest in either point estimates or interval estimates (2 simulation studies in 

Chen, Choi, Weiss, & Stapleton, 2014).  

  Despite the final conclusions of the included studies whether frequentist or BayesN 

estimation methods performed better, in 15 out of 22 studies that compared these estimation 

methods, excessively high levels of bias were reported when using BayesN. In several of 

these studies, there is even more bias reported with BayesN than when frequentist methods 

are used (see e.g., Browne & Draper, 2006; Chen et al., 2015; Depaoli & Clifton, 2015; 

McNeish, 2016b; Holtmann et al., 2016). As stated by McNeish (2016b) “relying on software 

defaults or diffuse priors with small samples can yield more biased estimates than frequentist 

methods.” (p. 750). Besides high levels of bias, the reported levels of power were rather low 

(see Figure 4).  

  In 7 out of 22 studies that examined BayesN and frequentist methods, no severely 

biased estimates were reported when using BayesN. However, 6 of these studies focused on 

mediation or multilevel mediation models and did not evaluate the variance parameters (2 

simulation studies in Chen et al., 2014; Hox et al., 2014; Koopman et al., 2015; Miočević et 

al., 2017; Yuan & MacKinnon, 2009). As shown in Figure 5, the variance parameters are 

more often problematic in terms of bias than the structural parameters. Interestingly, Tsai and 

Hsiao (2008) evaluated the variance parameters using Bayesian estimation with reference 

priors, and reported that “the Bayesian approach, particularly under the approximate Jeffreys’ 

priors, outperforms other procedures” (p. 588). The discussion of reference priors is beyond 

the scope of this paper. Readers interested in reference and Jeffreys’ priors are referred to 

Berger, Bernardo and Sun (2009), Bernardo (1979), Jeffreys (1945) and Yang and Berger 

(1996).  
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 Problematic parameters. The studies in which problematic levels of bias were 

reported when BayesN was used did not report problematic levels of bias for all parameters. 

Overall, the estimation of variance parameters led to substantially more problems than the 

estimation of structural parameters, which supports what is shown in the earlier discussed 

boxplot on relative bias (Figure 5). There were also some model specific parameters that 

resulted in severely biased estimates. 

In latent growth models, the highest bias was found in the estimates of the intercept 

variance or linear slope variance (McNeish, 2016b; van de Schoot et al., 2015). For example, 

in the study by van de Schoot et al. (2015), using BayesN (referred to as “Mplus default 

priors“ in Appendix Table A1), a relative bias of 84.4% is reported for the variance of the 

linear slope, and they report that the estimate for the intercept variance is “not even provided 

by Mplus because it is too large” (p. 7).  

The estimation of variance parameters in multilevel models with small samples is a 

well-known problem (see e.g., Gelman, 2006). This is supported by the results of the 

included studies. The between level variance parameters were severely biased (see e.g., 

Browne & Draper, 2000; Browne & Draper, 2006; Hox et al., 2012; Stegmueller, 2013; 

Holtmann et al., 2016) although the highest levels of relative bias were reported for the 

between-level covariate parameter in the study by Depaoli and Clifton (2015). The estimates 

for the covariate of BayesN (referred to as “noninformative (diffuse) priors” in Appendix 

Table A1) with a small sample size exceed the 10% cut off value in 99 of out 120 conditions 

(82.50%) (Depaoli & Clifton, 2015, pp. 337–344 Tables 2-7). Gelman (2006) suggested 

using a half-Cauchy prior distribution for the variance parameters to decrease bias. McNeish 

and Stapleton (2016) compared this half-Cauchy prior to an Inverse Gamma and Uniform 

prior for the variance components in a multilevel model (referred to as “uninformative Half-

Cauchy prior”, “uninformative IG prior”, “uninformative U prior” in Appendix Table A1, 
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respectively), and concluded that the half-Cauchy prior “produced the best estimates of the 

variance components with few clusters” (p. 12), but for the smallest number of clusters (4 

clusters), the bias was “still rather high” (p. 12). For a more in-depth discussion of the half-

Cauchy prior distribution, we refer to Gelman (2006) and Polson and Scott (2012). 

The study by van Erp et al. (2018) which examined a linear SEM with a mediation 

effect, reported problematic levels of bias for the measurement and structural intercepts. In 

mixture models, the recovery of class proportions was problematic when BayesN was used. 

The Dirichlet prior was specified for class proportions, which assumes equal class 

proportions in the Mplus default settings. With a clear majority or minority class, the class 

proportions in the data deviate from the ones specified by the default Dirichlet prior, and 

therefore resulted in very poor class proportion recovery of BayesN (Depaoli, 2013; referred 

to as “Mplus default noninformative priors“ in Appendix Table A1).  

Aside from certain parameters that require some additional attention, some other 

factors could also impact the performance of estimation methods, such as: categorical versus 

continuous data (see e.g., Holtmann et al., 2016); the strength of group differences (see e.g., 

Serang et al., 2015); the intra class correlations in multilevel models (see e.g., Depaoli & 

Clifton, 2015); the level of class separation (see e.g., Depaoli, 2012); and the number of 

measurement occasions (see e.g., Serang et al., 2015). 

Reasons for high levels of bias. One primary culprit of the high levels of bias for the 

BayesN estimates is the relatively larger influence of the prior on the posterior when the 

sample size is small and models are complex (see e.g., Lee & Song, 2004; McNeish, 2016a; 

Natesan, 2015). When using naive priors, a very wide range of plausible values is specified. 

All values that fall within this range can be sampled during the MCMC procedure. The 

probability mass can therefore also lie on extreme values. This is problematic when the 

sample size is small, because the prior is given more relative weight than with larger samples 
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and therefore has more impact on the posterior than it has with relatively larger sample sizes. 

In a complex model, there are many parameters to estimate. With a small sample size, we can 

expect that priors have more impact on the posterior, as the small data set is too sparse for the 

complexity of the model, thus making the information in the prior more impactful. The 

combination of the relatively large impact of the prior on the posterior and the use of default 

priors can result in highly biased estimates.  

 Furthermore, the use of improper priors could also play an important role in the cause 

of problematic levels of bias. Depaoli (2013) discussed that the large variance 

hyperparameter for the Mplus default prior for intercepts, regression slopes and factor 

loadings [N (0, 1010)] could be the reason for the highly biased parameter estimates in growth 

mixture models, because “the priors were acting as almost improper noninformative priors.” 

(p. 213). Van de Schoot et al. (2015) discuss that the default hyperparameters for the Inverse 

Gamma distribution in Mplus [IG (-1,0)] result in improper prior distributions, which could 

lead to computational problems as was pointed out by Asparouhov and Muthén (2010a). 

Therefore, van de Schoot et al. (2015) recommend researchers to always use proper prior 

distributions instead of improper prior distributions for variance parameters, for example, use 

Inverse Gamma distributions with hyperparameters (0.001, 0.001) which is considered to be a 

noninformative prior, by van de Schoot et al. (2015, p. 9) or Inverse Gamma (0.5, 0.5), which 

is considered to be a “very informative” prior by van de Schoot et al. (2015, p. 9).  

  To conclude, using Bayesian estimation with solely naive priors does not give the 

desired results when sample sizes are small: it can cause extremely biased parameter 

estimates – even more biased than frequentist estimates – and power levels remain very low. 

BayesT vs. Frequentist Methods 

In 18 studies, BayesT was examined and compared to frequentist methods. In the BayesT 

condition, prior information was included for at least one of the parameters in the model, and 
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often used in combination with flat or default priors. The investigated BayesT prior 

distributions in the included studies are based on (a) the specified population values in the 

simulation design; (b) combinations of specified population values, the literature 

recommendations and Mplus default priors; (c) results of previous studies; and (d) properties 

of the model or knowledge of the parameter range. Especially the studies in which the priors 

are based on the latter two categories (c and d), can be of interest for researchers who want to 

apply Bayesian estimation with thoughtful priors (for the use of previous studies in prior 

distributions see Baldwin & Fellingham (2013) and Yuan & MacKinnon (2009); and for the 

use of properties of the model and knowledge of parameter range in prior distributions see 

Price (2012) and Yuan & MacKinnon (2009)).  

  From the 18 studies that compared BayesT to frequentist methods, 9 studies 

concluded that BayesT performed better than the frequentist methods (Depaoli & Clifton, 

2015; Natesan, 2015; Price, 2012; Serang, Zhang, Helm, Steele, & Grimm, 2015; van de 

Schoot et al., 2015; Yuan & MacKinnon, 2009; 2 simulation studies in Zondervan-

Zwijnenburg et al., 2018; Miočević et al., 2017). The other 9 studies did not report a clear 

preference for one of the two methods, either because BayesT and the frequentist methods 

performed equally well (Farrell & Ludwig, 2008) or because the superiority of one of the two 

estimation methods depended on the amount or accuracy of information incorporated in the 

prior distributions (2 simulation studies in Depaoli, 2012; Depaoli, 2013; 2 simulation studies 

in McNeish, 2016b; Holtmann et al., 2016), the choice of the prior distributions (Baldwin & 

Fellingham, 2013), or the evaluation criteria and parameters of interest (Chen et al., 2014). 

For instance, in the two simulation studies from McNeish (2016b) it is concluded that BayesT 

with strong priors (referred to as “strong priors” in the latent growth model study and 

“strongly informative priors” in the multilevel study, in Appendix Table A1) lead to 

comparable results as REML with Kenward-Roger correction, and both methods perform 
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better than BayesT with weak priors. In the two studies by Depaoli (2012), it is reported that 

BayesT with “tight priors” (as referred to in Appendix Table A1) performs best, followed by 

ML and then followed by BayesT with “weak priors” (as referred to in Appendix Table A1). 

Depaoli (2013) investigated 4 types of BayesT priors (referred to as “informative accurate”, 

“weakly informative”, “partial informative” and “informative and inaccurate” priors in 

Appendix Table A1), and concluded that only BayesT with “informative accurate priors”, and 

BayesT with “partial knowledge priors” perform well, and that all other BayesT options and 

ML perform very poorly. Furthermore, Baldwin and Fellingham (2013) concluded that 

BayesT with Gamma priors for the variance parameters (referred to as “thoughtful priors” in 

Appendix Table A1) performed better than REML with Kenward-Roger correction, while 

REML with Kenward-Roger correction performed better than BayesT with uniform priors 

(referred to as “flat uniform prior” in Appendix Table A1). This shows that not only the 

amount of information captured in the prior distribution matters, but that also the distribution 

is of importance. However, in comparison to the severely biased estimates as a result of using 

BayesN, the bias can be extremely reduced by adjusting the parameter range without 

specifying a distribution that represents the prior information (Baldwin & Fellingham, 2013). 

The result that BayesT performed better in general than frequentist methods is not 

surprising. By adding prior information, and especially when the hyperparameters of the prior 

distribution are centered at the population values, the posterior will give less variable and 

more precise results in comparison to results from frequentist methods. However, thoughtful 

priors can also be specified with hyperparameters that deviate from the population values (so-

called “inaccurate priors” as specified in Depaoli (2013), or “weakly/ strongly informative 

inaccurate priors” as specified in Holtmann et al. (2016)). Obviously, the use of these type of 

priors will result in worse parameter estimates compared to the result of priors with 

hyperparameters that are similar to the population values. However, note that the latter 
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represent the upper-bound performance of Bayesian estimation, which is often not realistic in 

practice. For more details on the performance of priors that deviate from population values 

see for example, Depaoli (2013), Depaoli (2014), Holtmann et al. (2016), and Lee, Song, & 

Tang (2007). 

 Weak vs. strong thoughtful prior distributions. In 14 studies, multiple thoughtful 

prior distributions are compared. These priors were obtained by varying the level of 

informativeness via adjusting the variance hyperparameter of the prior distribution (see e.g., 2 

simulation studies in Depaoli, 2012; Depaoli & Clifton, 2015; Depaoli, 2013; van de Schoot 

et al., 2015; 2 simulation studies in Zondervan-Zwijnenburg et al., 2018; Holtmann et al., 

2016), or by adjusting both hyperparameters (2 simulation studies in McNeish, 2016b; 

Natesan, 2015). Other variations of thoughtful priors are obtained by varying the parameters 

for which a thoughtful prior was specified or by adjusting the accurateness of the prior 

information included in the distributions (e.g., Depaoli, 2013; Miočević et al., 2017), or 

finally, by varying the distribution that is specified (see e.g., Baldwin & Fellingham, 2013; 

Yuan & MacKinnon, 2009).  

In multiple studies, it is shown that adding weak prior information (e.g., by specifying 

distributions with large variance hyperparameters), the performance can still be poor 

(Depaoli, 2012; Holtmann et al., 2016), probably because the admissible parameter range can 

still be very large. This also explains the occurrence of high levels of bias for BayesT in 

Figure 5. Even though the use of weak priors can still lead to biased estimates, the results are 

already improved in comparison to the results obtained using solely naive priors (e.g., 

Depaoli & Clifton, 2015; McNeish, 2016b). However, the results can further be improved by 

adding stronger prior information (e.g., Depaoli, 2012; McNeish, 2016b; Holtmann et al., 

2016). 
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Furthermore, in mixture models, the use of BayesT in combination with a naive prior 

on the class proportions parameter still produces highly biased estimates (2 simulation studies 

in Depaoli, 2012). Depaoli (2012) concluded that Bayesian estimation can solely be used for 

mixture models when “tighter priors can be placed on (…) mixture proportions and the 

structural model parameters” (p. 200), because it might otherwise result in higher levels of 

bias. 

  Whether a prior distribution is considered weak or strong, depends among many other 

factors on the parameter for which the prior is specified, and the scale of the variables in the 

data. To give an example of weak and strong prior distributions, we discuss the specified 

prior distributions in the studies of Depaoli (2012) and Holtmann et al., (2016). In both 

studies, normal distributions are specified N(µ, σ2), where the mean hyperparameter µ equals 

the population value, and the variance hyperparameter σ2 contains different values to specify 

the level of informativeness. First, in the study of Depaoli (2012), in which a two-factor 

model with two mixture classes is investigated, the variance hyperparameter for the factor 

loadings prior distribution was set to 100 in the “weak” condition, and set to 0.01 in the 

“tight” condition. A variance of 100 corresponds to a standard deviation of 10, which means 

that 95% of the prior distribution lies between [-20; 20] when the mean hyperparameter of the 

distribution equals zero. A variance of 0.01 corresponds to a standard deviation of 0.1, and 

thus 95% of the prior distribution lies between [-0.2; 0.2] when the mean hyperparameter 

equals zero. A second example can be found in Holtmann et al., (2016): the “weakly 

informative accurate priors” for the factor loadings in the two-level confirmatory factor 

analysis model have a variance hyperparameter of 0.2. A variance of 0.2 corresponds to a 

standard deviation of 0.45, and 95% of the prior distribution lies between [-0.90; 0.90]. The 

“strongly informative accurate priors” in Holtmann et al., (2016) have a variance 
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hyperparameter of 0.01, which equals the variance used for the “tight” informative prior in 

Depaoli (2012).  

Priors on variance parameters. In the section on ‘BayesN vs. frequentist methods’, 

it was shown that naive priors can cause high levels of bias, especially for the variance 

components. Seven studies that used thoughtful priors placed thoughtful priors on the 

variance components (Baldwin & Fellingham, 2013; 2 simulation studies in McNeish, 2016b; 

van de Schoot et al., 2015; Depaoli, 2012; Holtmann et al., 2016; Miočević et al., 2017). 

These studies showed that using informative priors on variance parameters reduces the bias in 

variance estimates compared to the use of naive priors (e.g., Holtmann et al., 2016; McNeish, 

2016b). In only four of the other studies and conditions in which naive priors were placed on 

the variance components in combination with thoughtful priors on other parameters in the 

model, the performance of variance parameters was discussed (see 2 simulation studies in 

Depaoli, 2012; Depaoli, 2013; Holtmann et al., 2016). Depaoli (2012; 2013) shows that naive 

priors on the variance parameters also in combination with informative priors on other 

parameters can still result in high levels of bias in mixture models (depending on the total 

sample size, class proportions, and level of class separation). On the other hand, Holtmann et 

al. (2016) conclude that the bias for variance parameters in a multilevel model was decreased 

when informative priors for other parameters were specified when naive priors were used for 

the variance parameters. This shows that when the prior distribution for one parameter is 

changed, it can also influence the posterior of another parameter, even when the prior 

distribution for a particular parameter was held constant (e.g., Holtmann et al., 2016). 

Naive vs. thoughtful priors. In 8 studies, BayesN is compared to BayesT (Chen et 

al., 2015; Depaoli & Clifton, 2015; van de Schoot et al., 2015; Yuan & MacKinnon, 2009; 2 

simulation studies in McNeish, 2016b; Holtmann et al., 2016; Miočević et al., 2017) and all 

studies concluded that BayesT performed better than BayesN. There was one exception: 
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Holtmann et al. (2016) concluded that for the two-level confirmatory factor analysis model 

with continuous indicators, the performance of BayesN and BayesT was comparable. For the 

model with categorical indicators, the performance of the “weakly/ strongly informative 

accurate priors” performed better than BayesN (Holtmann et al., 2016). In the other studies, 

BayesT was favored over BayesN regardless of other simulation conditions. For example, 

Yuan & MacKinnon (2009) wrote that the quality of the estimates can be improved by 

including prior information. Other studies in which BayesT is investigated go further in their 

conclusions and write that Bayes with prior information [BayesT] is necessary when the 

sample size is small. For instance, van de Schoot et al. (2015) concluded that low levels of 

power and biased parameter estimates can be “solved” using Bayesian estimation with 

thoughtful priors (p. 1). Further, Zondervan-Zwijnenburg et al. (2018) pointed out, that to 

acquire reasonable power with small samples, it is necessary to use Bayesian estimation with 

“very specific prior information” (p. 17, and see Figure 3 on p. 16 in Zondervan-Zwijnenburg 

et al., 2018). These conclusions support the results shown in Figure 3, that only when 

Bayesian estimation is used in combination with substantial prior information, it can lead to 

the desired power level. When thoughtful prior distributions are placed on the parameter of 

interest, the power level for this particular parameter is likely to increase (Zondervan-

Zwijnenburg et al., 2018), while using a naive prior on the parameter of interest - in 

combination with thoughtful priors for other parameters in the model - can still lead to low 

levels of power (McNeish, 2016b). 

To conclude, when prior information centered at the population values is added to the 

model, it is less likely to find highly biased estimates. However, when weak thoughtful priors 

are specified, for example, because large variance hyperparameters are specified, the 

admissible parameter range can still be large, and therefore, the performance can still be poor 

(although better than when only naive priors are used). Overall, by incorporating prior 
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information to the model, the parameter estimates improved in terms of relative bias and 

power. 

BayesD vs. Frequentist Methods 

In 5 studies, BayesD is compared to frequentist methods. The data dependent priors are based 

on ML estimates (Depaoli, 2013; McNeish, 2016a; van Erp et al., 2018), Restricted Iterative 

Generalized Least Squares estimates (Browne & Draper, 2000), or BayesN estimates (Lee & 

Song, 2004). From these 5 studies, 3 studies reported that BayesD performed better than 

frequentist methods (Lee & Song, 2004; McNeish, 2016a; van Erp et al., 2018). For example, 

Lee and Song (2004) favor BayesD over ML for small samples, because they found that it 

can even be used with samples as small as “two or three times the number of unknown 

parameters” (Lee & Song, 2004, p. 680). Furthermore, McNeish (2016a) reports for the 

investigated latent growth models, that using Bayes with data dependent priors still results in 

some parameter bias, but that the performance is much improved in comparison to Full 

Information ML or naively applying Bayes with Mplus default priors. 

 The 2 remaining studies reported that both BayesD and the frequentist methods did 

not perform well with small samples (Browne & Draper, 2000; Depaoli, 2013). For example, 

Browne and Draper (2000) summarize that Bayesian estimation [BayesD and BayesN; 

referred to as “gently data-determined prior”, and two “diffuse Inverse Wishart priors”, 

respectively, in Appendix Table A1] has equal or better levels of bias and coverage in 

comparison to two least squares frequentist estimation methods, but that “neither approach 

performs as well as might be hoped with small J [number of clusters]” (p. 391). The five 

studies that investigated BayesD yielded inconsistent results and recommendations, so it is 

difficult to make definitive conclusions about the performance of the BayesD approach based 

upon these inconclusive results.  

  In 3 studies, BayesD is also compared to BayesN (Browne & Draper, 2000; McNeish, 
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2016a; van Erp et al., 2018). In the study of McNeish (2016a), BayesD (referred to as “data-

dependent prior” in Appendix Table A1) is favored over the two BayesN priors (referred to 

as “noninformative proper/ improper Inverse Wishart priors” in Appendix Table A1), because 

it resulted in lower levels of bias and because of its ease of implementation. Browne and 

Draper (2000) report that both BayesD as BayesN (referred to as “gently data-determined 

prior” and two “diffuse Inverse Wishart priors” in Appendix Table A1) did not perform well 

with small samples, and van Erp et al. (2018) concluded that, especially with small samples, 

all investigated methods perform very differently, and “that there is not one default prior 

[BayesN and BayesD; referred to as three “noninformative improper”, three “vague proper”, 

one “vague normal” and two “empirical Bayes” priors in Appendix Table A1] that performed 

consistently better than the other priors or than ML estimation across all parameters or 

outcomes.” (p. 26). Depaoli (2013) compared the performance of all three Bayesian 

estimation methods, and concluded that Bayesian estimation with solely naive priors 

[BayesN; referred to as “Mplus default noninformative priors” in Appendix Table A1] and 

Bayesian estimation using data dependent priors [BayesD; referred to as “data-driven 

informative priors” in Appendix Table A1] resulted in poor performance. Parameter estimates 

were well recovered only when highly informative prior distributions were used. This shows 

again the importance of adding prior information when Bayesian estimation is used with 

small samples. 

Conclusion 

In the current study, a systematic literature review was performed to present an overarching 

overview of the performance of Bayesian and frequentist estimation for structural equation 

models with small samples. We included 32 simulation studies in which the performance of 

Bayesian and frequentist estimation is compared for varying structural equation models with 

small sample sizes. Whereas frequentist methods can result in severely biased estimates, 
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nonconvergence and inadmissible solutions when samples are small, Bayesian estimation can 

be a viable alternative. However, based on our systematic review, we strongly recommend 

against naively using Bayesian estimation to address small samples. When Bayesian 

estimation with solely naive priors is used, high levels of bias are reported, especially for 

variance parameters. This bias is often even higher than for frequentist methods, and can only 

be decreased by incorporating prior information, that is, using Bayesian estimation with 

thoughtful priors. We therefore conclude that naively using Bayesian estimation is not a 

solution for small sample problems and, what we call, thoughtful priors are needed. We want 

to encourage researchers to make well-considered decisions about all prior distributions when 

Bayesian estimation is used with small sample sizes. Therefore, in the next section, we 

provide recommendations on how to construct weakly thoughtful priors.  

Recommendations on How to Construct Thoughtful Priors  

  Previous studies, meta-analysis, opinions of experts in the field, or information about 

the scale can be used to come up with thoughtful priors. In two included simulation studies, 

the authors show how they came up with thoughtful prior distributions based on previous 

studies (Baldwin & Fellingham, 2013; Yuan & MacKinnon, 2009). Van de Schoot, 

Sijbrandij, Depaoli, Winter, Olff and van Loey (2018) and Zondervan-Zwijnenburg, Peeters, 

Depaoli, and van de Schoot (2017) also provide useful strategies for acquiring prior 

information in practice. For more information on expert elicitation, we refer to O’Hagan et al. 

(2006).  

  Below, we discuss a few of many possible ways to construct thoughtful priors. We 

illustrate the process of selecting thoughtful priors using a mediation model (see Figure 6). 

Mediation analysis is used to evaluate the effect of an independent variable (X) on a 

dependent variable (Y) that is transmitted through the mediator (M). When the mediator and 



BAYESIAN VS. FREQUENTIST SEM FOR SMALL SAMPLES  26 
 

 

the outcome are continuous, the mediated effect in the single mediator model can be 

computed using two linear regression equations (MacKinnon, 2008): 

𝑀 =  𝑖2 + 𝑎𝑋 + 𝑒2, (1) 

and 

𝑌 =  𝑖3 + 𝑐′𝑋 + 𝑏𝑀 + 𝑒3, (2) 

where i2 and i3 represent intercepts, a represents the effect of the independent variable on the 

mediator, c′ represents the effect of the independent variable on the outcome controlling for 

the mediator, b represents the effect of the mediator on the dependent variable controlling for 

the independent variable, and residuals e2 and e3 are assumed to be normally distributed with 

variances 𝜎𝑒2
2  and 𝜎𝑒3

2 , respectively. In Bayesian mediation analysis, the seven parameters (i2, 

i3, a, c′, b, e2, e3, 𝜎𝑒2
2  and 𝜎𝑒3

2 ) need prior distributions. Below, we discuss hypothetical 

examples to construct priors for the following parameters: intercept i2, regression coefficients 

a and b, and residual variance parameter 𝜎𝑒3
2 . The examples of the prior distributions are 

presented in Figure 7, and Appendix A2 contains the R-code to reproduce the prior 

distributions. 

Impossible and implausible parameter space 

  When defining priors to deal with small samples and to avoid naive priors, one could 

reduce the parameter space by differentiating between impossible parameter space – 

parameter values that do not receive any density mass in the prior and are prevented from 

occurring in the posterior, and implausible parameter space – values that receive very little 

density mass and are very improbable in the prior, but could be obtained after the prior has 

been updated with the data. Note that by specifying an impossible parameter space (e.g. by 

using a Uniform or truncated-normal prior) one excludes values from the posterior – even in 

the case that these values do occur in the data. Therefore, we recommend to using such priors 

with caution and only when the excluded values are actually impossible in the data. For 
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instance, variance parameters are often restricted to be positive, as a negative variance 

parameter cannot be interpreted.   

 When selecting a prior for the intercept of M, i2 (see Equation 1), one could specify a 

prior distribution based on information from the scale that is used to measure M. Suppose that 

a 7-point Likert scale was used to measure M. The intercept i2 represents the value of M 

when X is zero (see Equation 1), and given the scale of M in this case, it is impossible for M 

to equal any value below 1 and above 7. This is an example of an impossible parameter 

space, which can be represented by selecting a prior distribution that does not allow for 

values outside the range of 1 and 7, e.g., a Uniform prior distribution U[1, 7] (see Figure 7A). 

 When selecting a prior for regression coefficient a (see Equation 1), one could 

consider what constitutes an implausible parameter space. Suppose that in a new study where 

M is measured on a scale of 0-100, based on the opinion of experts in the field, we expect 

that regression coefficients smaller than -60 and larger than 60 are highly implausible; that 

coefficients between -40 and 40 are implausible; and that coefficients between -20 and 20 are 

most plausible. Based on this information, we can compute the appropriate variance 

hyperparameter of the normal prior distribution. A standard deviation of 20 equals a variance 

hyperparameter of 400, and corresponds to a normal prior distribution in which 68% of the 

distribution lies between [-20; 20], and 95% of the prior distribution lies between [-40; 40], 

and 99.70% of the distribution lies between [-60; 60]. Based on this information, the 

corresponding mean hyperparameter can be computed, leading to a normal prior distribution 

with a mean hyperparameter of 0, and a variance hyperparameter of 400 (see Figure 7B). 

Note that although we use a normal prior distribution in the example, other types of prior 

distributions are also possible, depending on the software program.  

Previous Literature   
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  Now suppose that there is relevant background information about the relation 

between M and Y, which can be used to specify the prior for regression coefficient b (see 

Equation 2). Let’s say after performing a literature search it appears that 58% of the papers 

reported a negative regression coefficient, 10% reported a coefficient close to zero, and 32% 

of the studies reported a positive coefficient. One could create a normal prior distribution that 

represents these findings. For instance, a normal distribution with a mean hyperparameter of  

-1 and a variance hyperparameter of 9 yields these percentages (see Figure 7C). Note that 

regression coefficient b represents the effect of M on Y controlling for X. If previous 

literature is used to specify the prior distribution, these previous studies should have used the 

same scales to measure X, M, and Y as the current study, and should have been controlling 

for the same covariate X in the model where M predicts Y.  

  If the consulted literature is not an ideal source of prior information (e.g., the 

variables in previous studies are not the same as in the current study; or the constructs being 

evaluated are related, but slightly different), one can choose to make the prior less 

informative by increasing the variance hyperparameter. Similarly, all detected literature may 

suggest that the regression coefficient is negative. However, we advocate against including 

only negative values in the possible parameter space. Instead, in this case we recommend 

using a prior that allows for positive values, but makes them less probable than negative 

values. For examples in which expert knowledge and previous literature is used to construct 

priors, see van de Schoot et al. (2018) and Zondervan-Zwijnenburg et al. (2017).  

Variance Parameters   

  Selecting prior distributions for variance parameters might be less intuitive. The prior 

distribution that is often used for variance parameters is the Inverse Gamma distribution, 

which consists of two hyperparameters: α and β. To determine the values of these 

hyperparameters, information from a previously observed sample, a previous study or a pilot 
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study can be used. Hyperparameter α then equals half of the sample size of the previous 

study, and hyperparameter β can be computed as half of the sample size of the previous study 

times the variance estimate from the previous study (Gelman et al., 2013, p. 130). To 

illustrate, we use this method to construct the prior distribution for the residual variance of Y, 

𝜎𝑒3
2  (see Equation 2). Suppose a researcher collects pilot data from 20 participants and fits the 

mediation model, obtaining an estimate for the residual variance 𝜎𝑒3
2  of 2. The α 

hyperparameter will then be 0.5 × 20 = 10, and the β hyperparameter will be 

(0.5 × 20) × 2 = 20, which will yield an Inverse Gamma (α = 10, β = 20). This Inverse 

Gamma distribution can now be used as a prior distribution for residual variance 𝜎𝑒3
2  (see 

Figure 7D).  

One can increase the uncertainty in the prior by substituting a smaller value for the 

sample size of the previous study in the computation of the α and β hyperparameters. In case 

we would like to down weigh the information from the pilot study, we would encode that the 

sample size was below the original sample size of 20, for example 10. This yields an Inverse 

Gamma (α = 5, β = 10) prior distribution with smaller hyperparameters, and therefore a less 

informative Inverse Gamma distribution. 

Discussion and Concluding Remarks 

Various sample size recommendations exist, such as: ratios in which the number of 

participants and number of unknown parameters (i.e., model complexity) is taken into 

account (e.g., Lee & Song, 2004), rules of thumb that sample sizes below 100 are in general 

considered too small (Kline, 2015), or that studies with sample sizes below 200 participants 

should be rejected from publication (Barrett, 2007; Kline, 2015) – not to mention the 

numerous simulation studies in which the minimum required sample size is discussed based 

on the simulation results for a specific model of interest (see e.g., Hox et al., 2012; Lee & 

Song, 2004). As shown in the current study (see Table 1), whether a sample size is 
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considered to be small depends on many other factors than only the number of participants.  

General rules of thumb for sample sizes cannot take into account all these factors, and we 

should be aware that those rules of thumb are not generalizable to all situations.  

  A possible limitation of every systematic literature review, and thus also of the current 

one, is the possibility of missing a relevant study, even though we have carried out an 

extensive search process and have screened 3592 unique abstracts. Another limitation of our 

study could be that the prior distributions of all included studies are categorized into three 

categories, while differences exist within categories. For instance, for thoughtful priors 

varying levels of informativeness are studied, ranging from weak to highly informative 

thoughtful prior distributions centered at population values. All are allocated in the same 

category, while the more informative priors (centered at population values) will obviously 

lead to better results in terms of bias and power, than the weaker priors (centered at 

population values). 

  Based on our systematic review, we conclude that if Bayesian estimation is used to 

overcome small sample problems, thoughtful priors should be specified. However, the use of 

thoughtful priors is not a guarantee for perfectly unbiased estimates. Thoughtful prior 

distributions with a large variance hyperparameter, containing a large amount of uncertainty, 

can still yield a large admissible parameter range. They can therefore still result in poor 

estimates, although these estimates are likely to be an improvement over the estimates 

produced by Bayesian estimation with solely naive priors. Furthermore, a prior representing a 

high amount of certainty is only desirable when the researcher is indeed very certain about 

the incorporated information. Additionally, in simulation studies, the true population values 

are known and therefore prior distributions can be specified so they accurately represent 

values of population parameters. We must bear in mind that such results show the upper-

bound performance of Bayesian estimation. In empirical work, population values are 
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obviously not known, and the specified prior distributions are therefore likely to deviate from 

the data. The specification of deviating (or so-called ‘inaccurate’) priors will evidently lead to 

less favorable results compared to priors containing hyperparameters similar to population 

values (see e.g.,  Depaoli, 2013; Holtmann et al., 2016). This demonstrates the relevance of 

investigating the impact of specified prior distributions on the posterior by performing a 

sensitivity analysis (see for instructions Depaoli & van de Schoot, 2017). In addition, trace 

plots should always be inspected to check for spikes. They can occur when the permissible 

range for a parameter is large, and detecting spikes can be a sign of the sampling of extreme 

values (see e.g., Depaoli & Clifton, 2015; van de Schoot et al., 2015).  

  To conclude, naively using Bayesian estimation is not a solution for small sample 

problems: the specification of thoughtful priors is needed. We hope that the results of the 

current study encourage researchers to make well-considered decisions about all prior 

distributions in the model when Bayesian estimation is used with small sample sizes.  
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Footnotes 

1 In the current paper, we assume basic knowledge on Bayesian statistics. For a discussion of 

the differences between Bayesian and frequentist estimation, see, for example, the chapter on 

Bayesian and frequentist statistical schools in Kaplan (2014, pp. 285–296). Readers interested in 

Bayesian statistics are referred to, among many others: Gelman et al. (2013), Kaplan (2014), Kaplan 

and Depaoli (2013), Kruschke (2014), Lynch (2007), Lee and Wagenmakers (2014), and for recent 

methodological articles to the two special issues on Bayesian Data Analysis from Psychological 

Methods (Chow and Hoijtink, 2017; Hoijtink and Chow, 2017). 

  2 Although not further discussed in the current study, note that there are several other 

techniques to handle small sample sizes in SEM, such as ridge SEM (Yuan, Wu, & Bentler, 2011), 

and three-step estimation (Bakk, Oberski, & Vermunt, 2014).  

   3 Hyperparameters are the parameters of the prior distribution, for example, the mean and 

variance in a normal distribution. 

4 An exception is made for two studies in which the authors did not mention that a small 

sample size was used in the simulation study, while an obviously small sample size was used: 6 and 

12 clusters in a multilevel model (Browne & Draper, 2000; 2006). 

  5 We used all available results reported in tables in the included papers and appendices. When 

figures with coverage, power and/or relative bias results were shown in the paper, we contacted the 

authors to share their simulation results with us. For more details, see Supplemental Table S4. 

 6 The two exceptions are the studies of Farrell & Ludwig (2008) and Serang et al. (2015); 

they reported absolute mean bias instead of relative mean bias.  

   7 For more information about outliers, we refer to Supplemental Table S5, in which the 

minimum and maximum relative bias values per estimation method are reported. 
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Table 1 

Selected characteristics of simulation studies investigating frequentist and Bayesian 

estimation methods for SEM with small samples 

    Sample Size 

Study Model of interest 
Estimation 

methods 
Software 

Number of  

Persons/ Clusters 

Time Points/ 

Cluster Size 
      

Mediation Models 
 

 

   

1. Chen et al., 

2014* 

Mediation model with 3 

manifest variables 

ML, 

BayesN 

OpenBUGS, Mplus  25, 50, 200 - 

      

2. Chen et al., 

2014* 

Mediation model with 3 

latent variables and 

continuous indicators 

ML, 

BayesN 

OpenBUGS, Mplus  50, 100, 400 - 

      

3. Chen at al., 

2015 

Mediated-effect model 

with 3 latent variables and 

ordinal indicators 

RWLS, 

BayesN, 

BayesT  

Mplus, OpenBUGS  100, 200, 400 - 

      

4. Koopman 

et al. 2015 

Mediation model with 3 

manifest variables 

OLS, 

BayesN 

MASS, boot, 

MCMCpack in R  

20, 40, 60, 80, 

100 

- 

      

5. Miočević et 

al. 2017 

Single mediator model 

with 3 manifest variables 

OLS,  

BayesN, 

BayesT 

SAS 9.4, 

RMediation, SAS 

PROC MCMC 

20, 40, 60, 100, 

200 

- 

      

6. Yuan & 

MacKinnon, 

2009 

Mediation model with 3 

manifest variables 

ML, 

BayesN, 

BayesT 

WinBUGS 25, 50, 100, 200, 

1000 

- 

      

      

CFA Models 
 

 

   

7. Natesan, 

2015 

Ordinal CFA model with 

2 factors 

RML, WLS, 

RDWLS, 

RULS, 

BayesT 

JAGS,  

LISREL 

42, 63, 84, 105, 

210, 315 

- 

      

8. Lee & 

Song, 2004 

Model with 2 overlapping 

correlated factors;  

Model with 3 overlapping 

correlated factors 

ML, 

BayesD 

LISREL,  

BUGS 

32, 48, 64, 80;  

44, 66, 80, 110 

- 

      

9. Van Erp et 

al., 2018 

Model with 3 latent 

variables and mediation 

effect 

ML, 

BayesN, 

BayesD 

Mplus 7.2 35, 75, 150, 500 - 

      

      

Latent Growth Models 
 

 

   

10. McNeish, 

2016a* 

Latent growth model with 

2 binary individual-level 

predictors (I, LS) 

FIML, 

BayesN 

Mplus 7.1 20, 30, 50 4 

      

11. McNeish, 

2016a* 

Latent basis model and 

second order growth 

model (I, LS) 

FIML, 

BayesN, 

BayesD 

Mplus 7.1 20, 30, 50 4 

      

12. McNeish, 

2016b* 

Latent growth model with 

2 binary time-invariant 

exogenous predictors (I, 

LS) 

FIML,  

REML KR,   

BayesN, 

BayesT 

Mplus,  

SAS PROC 

MIXED 

20, 30, 50 4 
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Sample Size 

Study Model of interest 
Estimation 

methods 
Software 

Number of  

Persons/ Clusters 

Time Points/ 

Cluster Size 
      

13. Van de 

Schoot et al., 

2015 

Latent growth model 

including covariate to 

predict the linear slope (I, 

LS, QS) 

 

ML, 

BayesN, 

BayesT 

Mplus 7.1 8, 14, 22 3 

      

14. 

Zondervan-

Zwijnenburg 

et al., 2018* 

Multigroup latent growth 

model (I, LS, QS) 

MLR, 

BayesT 

Mplus 7.11 Group 1 = 5, 10, 

25, 50; Group 2 = 

50, 100, 200, 500, 

1000, 2000, 5000, 

10.000 

4 

      

15. 

Zondervan-

Zwijnenburg 

et al., 2018* 

Multigroup latent growth 

model (I, LS, QS) 

MLR, 

BayesT 

 

Mplus 7.11 Group 1 = 50; 

Group 2 = 50, 

100, 200, 500, 

1000, 2000, 5000, 

10.000 

 

4 

Multilevel Models 

 
 

   

16. Baldwin 

& Fellingham, 

2013 

Two-level partially 

clustered design 

REML KR,  

BayesT 

SAS PROC 

MIXED/ MCMC  

8, 16 5, 15 

      

17. Browne & 

Draper, 2000 

Two-level random-slopes 

regression model 

IGLS, 

RIGLS, 

BayesN, 

BayesD 

MLwiN, BUGS  12, 48 (un)balanced, 

mean = 18 

      

18. Browne & 

Draper, 2006 

Two-level variance-

components model 

ML, REML, 

BayesN 

MLwiN, WinBUGS 6, 12, 24, 48 (un)balanced, 

mean = 18 
      

19. Depaoli & 

Clifton, 2015 

Two-level latent covariate 

model with dichotomous 

and continuous indicators 

MLR 

/WLSM, 

BayesN, 

BayesT 

Mplus 

 

40, 50, 100, 200 5, 10, 20 

      

20. Farrell & 

Ludwig, 2008 

Two-level response time 

model 

ML, BayesT N.A. (i) 20;  

(ii) 5;  

(iii) 80 

(i) 20, 80, 500; 

(ii) 500;  

(iii) 20 
      

21. Holtmann 

et al., 2016  

Two-level CFA model 

with two correlated 

factors at both levels, 

continuous and 

categorical indicators 

MLR/ 

WLSMV, 

BayesN, 

BayesT 

Mplus 7 and 

Mplusautomation in 

R 3.0.2. 

50, 100, 150, 200 2, 4, 6 

      

22. Hox et al., 

2012 

Two-level model with one 

factor and one exogenous 

predictor 

ML (results 

from other 

study), 

BayesN 

Mplus 6.1 10, 15, 20 1755 

      

23. Hox et al., 

2014 

Two-level mediation 

model 

ML, 

BayesN 

Mplus 7.0 5, 10, 25, 50 5, 10 

      

24. McNeish, 

2016b*  

Two-level model with 

treatment effect measured 

at level 2 

FIML, 

REML KR, 

BayesN, 

BayesT 

Mplus, SAS PROC 

MIXED 

8, 10, 14 7-14 
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Sample Size 

Study Model of interest 
Estimation 

methods 
Software 

Number of  

Persons/ Clusters 

Time Points/ 

Cluster Size 
      

25. McNeish 

& Stapleton, 

2016 

Two-level model ML, REML, 

REML KR,  

BayesN 

SAS PROC 

MCMC/ MIXED/  

GLIMMIX 

4, 8, 10, 14 7-14, 17-34 

      

26. 

Stegmueller, 

2013 

Linear and nonlinear two-

level random-intercept 

models 

ML, 

BayesN 

N.A. 5, 10, 15, 20, 25, 

30 

500 

      

27. Tsai & 

Hsiao, 2008 

Two-level model REML, 

BayesN 

R, SAS PROC 

GLIMMIX 

15 6 

      

      

AR Model 

 
 

   

28. Price, 

2012 

Multivariate 

autoregressive lag-1 

model 

MLR, 

BayesT 

Mplus 6.2 1, 3, 5, 10, 15 25, 50, 75, 

100, 125 

      

      

Mixture Models 

 
 

 

 

 

29. Depaoli, 

2012* 

Two-factor model with 2 

classes, class separation at 

measurement level 

ML, BayesT Mplus 

 

100 (smallest 

class is 20), 300, 

800 

- 

      

30. Depaoli, 

2012* 

Two-factor model with 2 

classes, class separation at 

structural level 

ML, BayesT Mplus 100 (smallest 

class is 20), 300, 

800 

- 

      

31. Depaoli, 

2013 

Growth mixture model 

with 3 classes (I, LS and 

in 1 condition also QS) 

ML, 

BayesN, 

BayesT,  

BayesD 

Mplus 7 150 (smallest 

class is 15), 800 

4 

      

32. Serang et 

al., 2015 

Exponential growth 

mixture model with 2 

classes 

ML, BayesT 

 

R, OpenBUGS, 

Mplus 6.12 

 

200 (smallest 

class is 40), 500, 

1000 

5, 7, 9 

      

Note. Every line in the table represents one simulation study. * = multiple simulation studies from this paper are 

included in the qualitative synthesis. - = not applicable, I = intercept, LS = linear slope, QS = quadratic slope, 

ES = exponential slope. Bold = defined as a small sample size by the original authors. Underlined = not defined 

by original authors, defined by current authors as an obviously small sample size. Bayesian estimation methods 

abbreviations: BayesN = Bayesian methods with naive priors, BayesT = Bayesian methods with thoughtful 

priors, BayesD = Bayesian methods with data dependent priors, Frequentist estimation methods abbreviations 

(in alphabetical order): FIML = Full Information Maximum Likelihood, IGLS = Iterative Generalized Least 

Squares, ML = Maximum Likelihood, REML = Restricted Maximum Likelihood, REML KR = Restricted 

Maximum Likelihood with Kenward-Roger correction, RDWLS = Robust Diagonally Weighted Least Squares, 

RIGLS = Restricted Iterative Generalized Least Squares, RML/ MLR = Robust Maximum Likelihood, RULS =  

Robust Unweighted Least Squares, RWLS = Robust Weighted Least Squares, WLSM = Weighted Least 

Squares using a diagonal weight matrix. N.A. in Software column = information on the software program used 

is not available in the article. 

 

(Wickham, 2009) 
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Figure 1. The three approaches and six subsequent literature searches to identify relevant 

references. 

Approach 2 

SEMnet, Multilevel 

mailing lists, Research 

Gate 

 

Search 4 

Search 3 

Search 5 

Search 1 

Approach 1 

Review from van de 

Schoot et al. (2017) 

 

 

Search 2 

Approach 3 

Records identified 

through Scopus, 

published after 2014 

 

Search 6 
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Figure 2. Summary flow chart of the search process (based on the PRISMA guidelines). For a 

detailed description of the exclusion criteria, we refer to the ‘Inclusion and exclusion criteria’ 

Section. 

 
 

References included in 

qualitative synthesis: n = 27  

(n = 32 simulation studies) 

Full-text references retrieved:  

n =  487 

 

References after removal of 

exact duplicates (n = 905), 

and after removal of records 

already identified by previous 

searches (n = 553): n = 3592  

References used as starting 

point for the next search:  

n = 71  

- Search 1: n = 36 to Search 2 

- Search 2: n = 19 to Search 4 

- Search 3: n = 10 to Search 4 

- Search 4: n = 6 to Search 5 

 

References directly included 

in qualitative synthesis: n = 3 

Search 5: n = 0 

Search 6: n = 3 

Excluded based on title and abstract: n =  3105 

 

Excluded: n =  413 

- No Bayesian estimation: n = 11 

- No simulation study: n = 130 

- No small samples: n = 188 

- No SEM as defined in inclusion criteria: n = 29 

- Not interested in estimating model parameters: n = 10 

- No comparison of estimation methods: n = 15 

 

- Duplicates: n = 3 

- No peer review: n = 10 

- Outside field of social sciences: n = 16 

- Inaccessible after contacting authors: n = 1 

 

Excluded: n = 47 

- No small samples: n = 1 

- No peer review: n = 1 

- No SEM as defined in inclusion criteria: n = 15 

- Not interested in estimating model parameters: n = 5 

- No comparison of estimation methods: n = 25 

References identified: n = 5050 

- Search 1: n = 36 (identified through approach 1: review van de Schoot et al. (2017))  

- Search 2: n = 2248 (identified through results Search 1) 

- Search 3: n = 45 (identified through approach 2: mailing lists) 

- Search 4: n = 2387 (identified through results Searches 2 and 3) 

- Search 5: n = 261 (identified through results Search 4) 

- Search 6: n = 73 (identified through Scopus) 

 



Figure 3. Reported coverage in the included studies for structural parameters (e.g., latent means, regression 

coefficients), for sample sizes defined as small by the original authors, presented for the varying estimation 

methods. Dashed grey lines represent the desirable [92.50; 97.50] coverage level interval. The n represents 

for each estimation method the combined number of cells in the simulation designs of the included studies, 

that is, the amount of data points that were available. The width of the boxplots is a function of the 

number of data points. The boxplots are created by using the package ggplot2 (version 2.2.1; Wickham, 

2016) in R (R Core Team, 2018). The bold black line in the boxplots represent the median, the lower and 

upper ends of the boxplot correspond to the first and third quartiles, the whiskers are based on 1.5 times the 

inter-quartile range (which is the default in ggplot2; Wickham, 2016), and the circles beyond the end of the 

whiskers represent outliers.  
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Figure 4. Reported power in the included studies for structural parameters (e.g., latent means, regression 

coefficients), for sample sizes defined as small by the original authors, presented for the varying estimation 

methods. The dashed grey line represents the desirable 0.80 power level. The n represents for each estimation 

method the combined number of cells in the simulation designs of the included studies, that is,  the amount 

of data points that were available. The width of the boxplots is a function of the number of data points. The 

boxplots are created by using the package ggplot2 (version 2.2.1; Wickham, 2016) in R (R Core Team, 2018). 

The bold black line in the boxplots represent the median, the lower and upper ends of the boxplot correspond 

to the first and third quartiles, the whiskers are based on 1.5 times the inter-quartile range (which is the default 

in ggplot2; Wickham, 2016), and the circles beyond the end of the whiskers represent outliers.
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Figure 5. Reported relative bias in the included studies for A: structural parameters (e.g., latent means, 

regression coefficients), and B: variance parameters (e.g., factor variances, covariance, residual variances), 

for sample sizes defined as small by the original authors, presented for the varying estimation methods. 

Dashed grey lines represent the desirable [-10%; + 10%] relative bias interval. The n represents for each 

estimation method the combined number of cells in the simulation designs of the included studies, that is, 

the amount of data points that were available. The width of the boxplots is a function of the number of data 

points. The boxplots are created by using the package ggplot2 (version 2.2.1; Wickham, 2016) in R 

(R Core Team, 2018). The bold black line in the boxplots represent the median, the lower and upper ends of 

the boxplot correspond to the first and third quartiles, the whiskers are based on 1.5 times the inter-quartile 

range (which is the default in ggplot2; Wickham, 2016), and the circles beyond the end of the whiskers 

represent outliers.
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Figure 6. Single mediator model 



A B

C D

Figure 7. Uniform prior distribution for the intercept i2 (see A), Normal prior distributions specified using mean 

and variance hyperparameters for regression coefficients a (see B) and b (see C) and Inverse Gamma prior 
distribution for the residual variance of Y specified using the shape (α) and scale hyperparameters (β; see D). 
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Appendix A1 

 

Specified Prior Distributions in the Simulation Studies 

Study 
Wording in paper (“...”), 

classification in review (*) 
Prior distributions 

Mediation Models 

1. Chen at al., 

2014 

“flat or uninformative” priors  

* Bayes Naive 

Intercepts of the dependent variable and mediator: τm τy ~ N(0, 100) 

Regression coefficients: a,b,c, ~ N(0, 100) 

Residual variables for M and Y: Em, Ey ~ G(0.01, 100i) 

2. Chen at al., 

2014 

“flat or uninformative” priors 

* Bayes Naive 

Intercepts of the dependent variable and mediator: τm τy ~ N(0, 100) 

Regression coefficients: a,b,c,λ  ~ U[-1, 1] 

Residual variables for M and Y: Em, Ey ~ G(0.01, 100i) 

Residue variance of each indicator: EI ~ G(0.01, 100i) 

Intercept of each indicator:  αI ~ N(0, 100) 

3. Chen et al., 

2015 

 

 

“informative priors that are 

reasonable in practice” 

* Bayes Thoughtful  

First threshold: τj1 ~ N(0, τ0) 

Other thresholds: Δτjc (c = 2 to C – 1) ~ Log-N(0, Δτ0) 

Factor loadings: λj ~ N(0, λ0) 

(Residual) variances: ψ1, ϕ1, ϕ2 ~ G(γ1, γ2) 

Regression paths: βk ~ N(0, β0), where τ0, Δτ0, λ0, γ1, γ2 and β0 = 1 

“flat priors” 

* Bayes Naive 

First threshold: τj1 ~ N(0, τ0) 

Other thresholds: Δτjc (c = 2 to C – 1) ~ Log-N(0, Δτ0) 

Factor loadings: λj ~ N(0, λ0) 

(Residual) variances: ψ1, ϕ1, ϕ2 ~ G(γ1, γ2) 

Regression paths: βk ~ N(0, β0), where τ0, Δτ0, λ0, β0 = 100 and γ1, γ2 = 0.01 

4. Koopman et al., 

2015 

“uninformative” priors 

* Bayes Naive 

Priors Model 2: Y ~ M + X. Intercept ~ N (0, 106) 

Relationships between Mediator and Outcome; Dependent and Outcome; and Covariates and Outcome ~ N (0, 106) 

 

Priors Model 3: M ~ X. Intercept ~ N (0, 106) 

Relationships between Dependent and Mediator; and Covariates and Mediator ~ N (0, 106) 

 

No information available on residual variances. 

5. Miočević et al., 

2017 

“method of coefficients with 

diffuse” priors 

*  Bayes Thoughtful 

Regression coefficients a, b, c’ ~ N(mean  = population value, var = 1000) 

Residual variances 𝜎2 and 𝜎3 ~ IG(.01, .01) 
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“method of coefficients with 

informative” priors 

* Bayes Thoughtful 

Regression coefficients a, b, c’ ~ N(mean = population value, sd = “standard errors of respective coefficients 

calculated using simulated (population-generating) values at a given sample size”) 

Residual variances 𝜎2 and 𝜎3 ~ IG(.01, .01) 

“method of covariances with 

diffuse” priors  

*  Bayes  Naive 

Means of X, M, and Y ~ MVN with means of 0, variances of 1000 and covariances of 0. 

Covariance matrix ~ IW(df, S), where df = 3, and S was specified so “that the prior expectations for variances and 

covariance between variables were 1 and 0, respectively”.  

“method of covariances with 

informative” priors  

* Bayes Thoughtful 

Means of X, M, and Y ~ MVN with means of 0, variances of 1000 and covariances of 0. 

Covariance matrix ~ IW(S, df), where df equals the “size of the observed sample in the condition”, and S was 

specified so “that the prior expectations for each variance and covariance equal their respective true values”. 

6. Yuan & 

MacKinnon, 2009 

“informative” uniform priors 

 * Bayes Thoughtful  

Priors on regression parameters α, β, τ’ for the varying effect sizes: 

α, β, τ’ ~ U[-0.14, 0.14] for zero effect size 

α, β, τ’ ~ U[0, 0.39] for small effect size 

α, β, τ’ ~ U[0.14, 0.59] for medium effect size 

α, β, τ’ ~ U[0.39, 0.79] for large effect size  

“For other parameters that appear in the mediation regression equations, noninformative prior distributions were used 

to reflect relatively weaker prior information on these parameters.”  

“informative” normal priors 

* Bayes Thoughtful  

Priors on regression parameters α, β for the varying effect sizes: N(μ, σ2), where μ = 0, 0.14, 0.39, 0.59 for zero effect 

size, small effect size, medium effect size, large effect size respectively. σ2 = not given.  

No prior specification given for τ’. 

“noninformative” priors 

*  Bayes Naive 

α, β, τ’ ~ N(0, 1.0e-6p)  

Residual precision y and m: G(0.001 ,0.001)p 

CFA Models 

7. Natesan, 2015 “informative” priors 

* Bayes Thoughtful  

 

 

Correlation latent factors 𝜉 ~ U [0, 1] 

Factor loadings: N (0,1) I (0, ) Truncated normal distribution, restricted to be positive.   

Thresholds for category c and item i:  N(0,1), where 𝑏𝑖,𝑐−1 < 𝑏𝑖,𝑐  

Vector of two factor scores for person p with mean vector mu: 𝜔2𝑝~ N2(mu, ∑), where 𝑚𝑢𝑗~ N(0,1) and ∑ = [
1 𝜉
𝜉 1

] 

 “relatively less informative” 

priors 

*  Bayes Thoughtful 

Correlation between latent factors 𝜉 ~ U [-1, 1] 

Factor loadings: N (0, 1) I (0, ) Truncated normal distribution, restricted to be positive   

Thresholds for category c and item i:  N(0,1), where 𝑏𝑖,𝑐−1 < 𝑏𝑖,𝑐  

Vector of two factor scores for person p with mean vector mu:  𝜔2𝑝~ N2(mu, ∑), where 𝑚𝑢𝑗~ N(0,1) and ∑ = [
1 𝜉
𝜉 1

] 

8. Lee & Song, 

2004 

“data dependent priors” 

* Bayes Data dependent  

“We first conducted an auxiliary Bayesian estimation on the basis of non-informative prior distribution to a single 

simulated data set (with n = 5a), then we chose the hyper-parameter values from the solution of this preliminary 

estimation. The selected hyper-parameter values are used in all the replications."  

9. Van Erp et al., 

2018 

3 “noninformative improper” 

priors 

Three priors for latent variable variances and residual variances: IG (0, 0), IG (-0.5, 0), IG (-1, 0)  

Intercepts, means, loadings, and regression coefficients: N (0, 1010) 
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* Bayes Naive 

3 “vague proper” priors 

* Bayes Naive 

Three priors for latent variable variances and residual variances: IG (0.001, 0.001), IG (0.01, 0.01), IG (0.1, 0.1) 

Intercepts, means, loadings, and regression coefficients: N (0, 1010) 

“vague normal prior” 

* Bayes Naive 

For measurement intercepts: N (0, 1000) 

For factor loadings, structural intercepts, structural regression coefficients: N (0, 100) 

For latent variable variances and residual variances: IG (-1, 0) 

2 “Empirical Bayes” 

estimators 

* Bayes Data dependent  

Two priors for latent variable variances and residual variances:  

IG (0.5, �̂�2 ∙ 𝑄−1 (0.5, 0.5)), with “�̂�2 denoting the ML estimate of the variance parameter and 𝑄−1 denoting the 

regularized inverse Gamma function.” 

𝜋 (𝜎2) ∝ 1, which equals IG (-1, 0) 

For intercepts, means, loadings, and regression coefficients: N (0,  �̂�2 + �̂�2), where �̂�2 is the squared maximum 

likelihood estimate, and �̂�2 is the residual variance estimate of the corresponding parameter. 

Latent Growth Models 

10. McNeish, 

2016a 

“noninformative” improper 

Inverse Wishart prior  

* Bayes Naive 

Factor covariance matrix: IW (0, –p –1)  

Mplus default priors on other parameters 

“noninformative” proper 

Inverse Wishart prior 

* Bayes Naive 

Factor covariance matrix:  IW (I, p), where I is an identity matrix of dimension p  

Mplus default priors on other parameters 

11. McNeish, 

2016a 

“noninformative” improper 

inverse Wishart prior  

* Bayes Naive  

Factor covariance matrix: IW (0, –p –1)  

Mplus default priors on other parameters 

“noninformative” proper 

inverse Wishart prior  

* Bayes Naive  

Factor covariance matrix: IW (I, p), where I is an identity matrix of dimension p  

Mplus default priors on other parameters 

 “data dependent prior”  

* Bayes Data dependent  

Factor covariance matrix: FIML estimates of the (co)variances  

Mplus default priors on other parameters 

12. McNeish, 

2016b 

“improper inverse Wishart” 

prior   

* Bayes Naive  

Growth parameter covariance matrix:  IW (0, –p –1), “where p is the dimension of the covariance matrix” 

Residual variances: IG (-1, 0) 

“non-informative” marginal 

inverse Gamma prior 

* Bayes Naive  

Growth parameter variances and residual variances: IG (0.01, 0.01) 

Growth parameter covariance: N (0, 10000) 

“weakly informative” priors 

* Bayes Thoughtful  
Growth parameter covariance matrix: IW (

3 0
0 . 3 

, 6) 

“strong” priors 

* Bayes Thoughtful 
Growth parameter covariance matrix: IW (

22 0
0 2.2 

, 25) 
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13. Van de Schoot 

et al., 2015 

Mplus “default” priors 

* Bayes Naive 

Variance parameters: IG (-1, 0) 

Structural parameters: N (0, 1010) 

varying inverse Gamma priors 

* Bayes Naive  

Variance parameters (after accounting problems with the variance parameters): IG (0, 0), IG (0.001, 0.001) 

Structural parameters: N (0, 1010) 

“very informative” Inverse 

Gamma prior 

* Bayes Thoughtful  

Variance parameters (after accounting problems with the variance parameters): IG (0.5, 0.5)  

Structural parameters: N (0, 1010) 

 “very informative” Inverse 

Gamma prior and prior for 

regression coefficient 

* Bayes Thoughtful 

Variance parameters: IG (0.5, 0.5) 

Regression coefficient from covariate to linear slope: N (10, 𝜎0
2), where 𝜎0

2 = 1010, 1000, 100, 50, 20, 10, 5, 3, 1 

(“noninformative” to “very informative” prior for regression coefficient) 

14. Zondervan-

Zwijnenburg et 

al., 2018 

“very informative” to 

“uninformative” prior for 

factor means 

* Bayes Thoughtful  

Latent growth factor means for the reference and focal groups: N (μ0, 𝜎0
2), where μ0 = population values and 

𝜎0
2 = 0.1, 0.3, 0.5, 1.0, 2.0, 5.0, 1010 

 

Mplus default priors for other parameters: 

Mean of covariate and regression coefficients: N(0, 1010) 

Variance of covariate and residual variances of observed variables: IG(-1,0) 

Covariances and residual variances of growth factors: IW(0,-4) 

15. Zondervan-

Zwijnenburg et 

al., 2018 

unbalanced prior information: 

“(…) a substantial amount of 

prior information (𝜎0
2 = 0.1) 

could only be obtained for the 

reference group, but not for 

the focal group (𝜎0
2 = 10.0).”  

* Bayes Thoughtful 

Latent growth factor means for reference group:  N(μ0, 𝜎0
2), where μ0 = population values and  𝜎0

2 = 0.1 (“substantial 

amount of prior information” 

Latent growth factor means for focal group: N(μ0, 𝜎0
2), where μ0 = population values and 𝜎0

2 = 10.0 

 

Mplus default priors for other parameters: 

Mean of covariate and regression coefficients: N(0, 1010) 

Variance of covariate and residual variances of observed variables: IG(-1,0) 

Covariances and residual variances of growth factors: IW(0,-4) 

Multilevel Models 

16. Baldwin & 

Fellingham, 2013 

“thoughtful priors”  

* Bayes Thoughtful  

  

Regression coefficient b0 ~ N (3, 2.25)  

Regression coefficient b1 ~ N (0, 1) 

Cluster effect uj ~ N (0, 𝜎𝑢
2) 

Cluster variance 𝜎𝑢
2 ~ G (0.7, 0.098)  

Residual variance clustered condition: 𝜎𝑒𝑐
2 ~ G (13, 0.03)  

Residual variance unclustered condition: 𝜎𝑒𝑢
2  ~ G (9, 0.03) 

“flat uniform prior” instead of 

gamma prior for 1 cell in 

simulation design 

* Bayes Thoughtful  

Regression coefficient b0 ~ N (3, 2.25)  

Regression coefficient b1 ~ N (0, 1) 

Cluster effect uj ~ N (0, 𝜎𝑢
2) 

Cluster variance 𝜎𝑢
2 ~ U [0, 0.23]  
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Residual variance clustered condition: 𝜎𝑒𝑐
2 ~ U [0, 0.69] 

Residual variance unclustered condition: 𝜎𝑒𝑢
2  ~ U [0, 0.69] 

17. Browne & 

Draper, 2000 

“diffuse Inverse Wishart 

prior” with identity matrix 

* Bayes Naive  

Fixed effects ~ U [-∞, +∞]  

Level 1 variance 𝜎𝑒
2 ~ U [0, 1/𝜖] or IG (𝜖, 𝜖), where 𝜖 = 0.001 (The authors state these priors are equivalent.) 

Covariance matrix ~ IW (2, Ι2), where Ι2 is a 2 x 2 identity matrix 

“gently data-determined prior” 

* Bayes Data dependent  

Fixed effects ~ U [-∞, +∞]  

Level 1 variance 𝜎𝑒
2 ~ U [0, 1/𝜖] or IG (𝜖, 𝜖) where 𝜖 = 0.001 (The authors state these priors are equivalent.) 

Covariance matrix ~ IW (4, ∑ 𝑢), where ∑ 𝑢 is the RIGLS estimate of the covariance matrix 

“diffuse Inverse Wishart 

prior” 

* Bayes Naive  

Fixed effects ~ U [-∞, +∞] 

Level 1 variance 𝜎𝑒
2 ~ U [0, 1/𝜖] or IG (𝜖, 𝜖), where 𝜖 = 0.001 (The authors state these priors are equivalent.) 

Covariance matrix ~ IW (-3,0) 

18. Browne & 

Draper, 2006 

“diffuse” Inverse Gamma 

prior 

* Bayes Naive 

Improper Uniform priors are used “on the real line R for fixed effects (these are functionally equivalent to proper 

Gaussian priors with huge variances).” 

Random-effect variances 𝜎2  ~ IG (ε, ε), where ε = 0.001 

“diffuse” Uniform prior 

* Bayes Naive  

Improper Uniform priors are used “on the real line R for fixed effects (these are functionally equivalent to proper 

Gaussian priors with huge variances).” 

Random-effect variances ~ U [0, 1/𝜖], where ε = 0.001 

19. Depaoli & 

Clifton, 2015 

“noninformative (diffuse)” 

priors 

* Bayes Naive  

Regression paths between and within level: 

N (0, 1010) for continuous indicators and N (0, 5) for categorical indicators 

Variance parameters within and between level: IG (-1, 0) 

6 “weakly informative” priors 

* Bayes Thoughtful 

 

Variance parameter within-group: IG (−1, 0) 

3 levels of informativeness were specified for the regression priors: N (1, 1), N (1, 0.5), or N (1, 0.25) 

2 priors for variance parameters at cluster level: IG (−1, 0) or IG (0.001, 0.001) 

3 x 2 = 6 prior combinations 

“informative” prior 

* Bayes Thoughtful  

Variance parameter within-group: IG (−1, 0) 

Regression paths between and within: N (1, 0.1)  

Variance parameters at cluster: IG (0.001, 0.001) 

20. Farrell & 

Ludwig, 2008 

“relatively noninformative 

priors” 

* Bayes Thoughtful 

First-level priors on parameters: 

Mean of the Gaussian: µi ~ N (ϒ1, ϒ2), with mean ϒ1 and precision ϒ2  

Standard deviation of the Gaussian in terms of precision: 1/σ2 = ∅i ~ G (δ1,  δ2)p 

Scale of exponential τ: 1/τ = 𝜆i ~ G(ε1, ε2) 

Second-level priors on parameters of parent distributions: 

ϒ1 ~ N (0.2, 2), ϒ2 ~ G (0.5, 0.5)p 

δ1 ~ Exp (1), δ2 ~ G (0.1, 0.1)p 

ε1 ~ Exp (1), ε2 ~ G (0.1, 0.1)p   
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21. Holtmann et 

al., 2016 

“diffuse” priors 

* Bayes Naïve 

Continuous indicator model using Mplus: 

𝜆Tik, 𝜆Mik and µik  ~ N(0, 10) 

Var(𝜖rtik) ~  IG(-1, 0) 

Var(Tk), Var(Mk),  Cov(T1, T2),  Cov(M1, M2) ~ IW(0, -3) 

 

Categorical indicator model using Mplus: 

𝜆Tik and  𝜆Mik ~ N(0, 5) 

𝜅sik ~ N(0, 10)  

Var(Tk), Var(Mk) ~ IW(1, 3) 

Cov(T1, T2), Cov(M1, M2) ~ IW(0, 3) 

“strongly informative 

accurate” priors 

* Bayes Thoughtful 

Continuous indicator model using Mplus: 

𝜆Tik ~ N(0.8, 0.01) 

𝜆Mik ~ N(1.2, 0.01) 

Var(𝜖rtik) ~  IG(-1, 0) 

µik ~ N(3, 1) 

Var(Tk), Var(Mk),  Cov(T1, T2),  Cov(M1, M2) ~ IW(0, -3) 

 

Categorical indicator model using Mplus: 

𝜆Tik ~ N(0.8, 0.01) 

𝜆Mik ~ N(1.2, 0.01) 

𝜅sik ~ N(0, 10)  

Var(Tk), Var(Mk) ~ IW(1, 3) 

Cov(T1, T2),  Cov(M1, M2) ~ IW(0, 3) 

“weakly informative accurate” 

priors 

* Bayes Thoughtful 

Extended set of prior conditions for categorical indicator model using Mplus: 

𝜆Tik ~ N(0.8, 0.2) 

𝜆Mik ~ N(1.2, 0.2) 

Var(Tk), Var(Mk) ~ IW(1, 3) 

Cov(T1, T2),  Cov(M1, M2) ~ IW(0, 3) 

𝜅sik ~ N(0, 10) 

“weakly informative 

inaccurate” priors 

* Bayes Thoughtful 

Extended set of prior conditions for categorical indicator model using Mplus: 

𝜆Tik ~ N(1.2, 0.2) 

𝜆Mik ~ N(0.8, 0.2) 

Var(Tk), Var(Mk) ~ IW(1, 3) 

Cov(T1, T2),  Cov(M1, M2) ~ IW(0, 3) 

𝜅sik ~ N(0, 10) 

“strongly informative 

inaccurate” priors 

* Bayes Thoughtful 

Extended set of prior conditions for categorical indicator model using Mplus: 

𝜆Tik ~ N(1.2, 0.01) 

𝜆Mik ~ N(0.8, 0.01) 
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Var(Tk), Var(Mk) ~ IW(1, 3) 

Cov(T1, T2),  Cov(M1, M2)  ~ IW(0, 3) 

𝜅sik ~ N(0, 10) 

“informative Wishart” prior 

* Bayes Thoughtful 

Extended set of prior conditions for categorical indicator model using Mplus: 

𝜆Tik and  𝜆Mik ~ N(0, 5) 

Var(Tk), Var(Mk) ~ IW(123, 126) 

Cov(T1, T2) ~ IW(61.5, 126) 

Cov(M1, M2) ~ IW(49.2, 126) 

𝜅sik ~ N(0, 10) 

22. Hox, van de 

Schoot, 

Matthijsse, 2012  

“uninformative priors” 

* Bayes Naive  

Mplus (version 6.1) default priors are used.  

No prior distributions are described in the paper. 

23. Hox et al., 

2014 

“flat” Mplus default priors 

* Bayes Naive  

Path coefficients ~ N (0, 1010)  

Variances ~ IG (-1,0)  

24. McNeish, 

2016b 

“non-informative Mplus 

default” priors * Bayes Naive 

Random intercept variance: IG (-1, 0) 

For all other parameters: Mplus default priors are used. 

“non-informative” prior 

*  Bayes Naive 

Random intercept variance: IG (0.01, 0.01)  

For all other parameters: Mplus default priors are used. 

“weakly informative” priors 

* Bayes Thoughtful  

Random intercept variance: IG (3, 3.25), which results in a mean of 1.625 and a standard deviation of 1.625.  

For all other parameters: Mplus default priors are used. 

“strongly informative” priors 

* Bayes Thoughtful  

Random intercept variance: IG (12, 18), which results in a mean of 1.64 and a standard deviation of 0.52.  

For all other parameters: Mplus default priors are used. 

25. McNeish & 

Stapleton, 2016 

“uninformative” IG prior 

* Bayes Naive  

Variance components ~ IG (0.01, 0.01) 

“uninformative” U prior 

* Bayes Naive  

Variance components ~ U [0, 10] 

“uninformative” Half-Cauchy 

prior  * Bayes Naive  

Variance components ~ Half-Cauchy (0, 4) 

 

26. Stegmueller, 

2013 

“non-informative, vague 

prior” 

* Bayes Naive  

Level 1 and level 2 variances: IG (0.001, 0.001)  

In models containing a random coefficient: Variance covariance matrix: IW (S, d), with d degrees of freedom, and 

diagonal scale matrix S = I2. (This prior produces “a marginal prior for the correlation between intercept and slope, 

which is uniform on [-1, 1], and distributed IG (1, ½) for the two variances.”)  

“non-informative, vague 

prior” 

* Bayes Naive  

Level 1 variances: IG (0.001, 0.001)  

Level 2 variances: “distributed uniform on the standard deviation” √𝜎𝑦
2 ~ c 

In models containing a random coefficient: Variance covariance matrix: Either IW (S, d), with d degrees of freedom, 

and diagonal scale matrix S = I2, or an “IW prior which posits twice the size for the (diagonal) variances” is used. 
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27. Tsai & Hsiao, 

2008 

“reference” approximate 

Uniform Shrinkage prior 

* Bayes Naive  

Fixed effects: N (0, 106)  

Covariance matrix D: reference approximate Uniform Shrinkage prior 𝜋𝑢𝑠(𝐷) ∝ det (I𝑞 + {
1

𝐼
∑ 𝑍𝑖

𝑡𝑊𝑖
𝐼
𝑖=1 𝑍𝑖} 𝐷)

−𝑞−1

, 

Where Iq is a q x q identity matrix, and Wi is an ni x ni diagonal weight matrix with elements  1

{𝑣𝑖𝑗
𝑏  [

𝜕𝜂𝑖𝑗
𝑏

𝜕𝜇𝑖𝑗
𝑏⁄ ]

2

}
⁄

 

“reference” Jeffreys prior 

using Fisher information 

matrix 

* Bayes Naive  

Fixed effects: N (0, 106)  

Covariance matrix D: Jeffreys’ prior using the approximate Fisher information matrix Ι(θ) (= Ι(D(θ))) for D with 

the (j, k)th component I𝑗𝑘 =
1

2
𝑡𝑟 (P

𝜕V

𝜕𝜃𝑗
 P

𝜕V

𝜕𝜃𝑘
), Where P = V-1 – V-1X(XtV-1X)-1XtV-1 and V = W-1 + ZDZt 

“reference” Jeffreys prior 

derived from different 

approximate likelihood 

* Bayes Naive  

Fixed effects: N (0, 106)  

Covariance matrix D: Jeffreys’ prior, as suggested by Natarajan & Kass (2000), derived from approximate likelihoods 

I𝑗𝑘
∗ ≈ ∑ 𝑡𝑟𝐼

𝑖=1 (([Z𝑖
𝑡WiZ𝑖]

−1 + D)−1 𝜕D

𝜕𝜃𝑗
 ×  ([Z𝑖

𝑡W𝑖Zi]
−1 + D)−1 𝜕D

𝜕𝜃𝑘
 )  

AR Model 

28. Price, 2012 “informative priors” 

* Bayes Thoughtful  

For theta ~ MVN (0,4) 

Covariance matrix ~ IW(𝜂0, 𝑆0
−1)  

Mixture Models 

29. Depaoli, 2012 “weak” priors 

* Bayes Thoughtful 

Factor loadings: N(μ, 100), where μ = population value 

Default Mplus prior for class proportions: D(10, 10) 

For all other parameters Mplus default priors are used. 

“tight” priors 

* Bayes Thoughtful  

Factor loadings: N(μ, 0.01), where μ = population value  

Class proportions ~ Dirichlet prior reflecting sample size and mixture class proportions, for n = 100, class proportion 

0.80/0.20, and prior is D(80,20) 

For all other parameters Mplus default priors are used. 

30. Depaoli, 2012 “weak” priors 

* Bayes Thoughtful 

Factor loadings: N(μ, 100), where μ = population value 

Default Mplus prior for class proportions: D(10, 10) 

For all other parameters Mplus default priors are used. 

“tight” priors 

* Bayes Thoughtful  

Factor loadings: N(μ, 0.01), where μ = population value  

Class proportions ~ Dirichlet prior reflecting sample size and mixture class proportions, for n = 100, class proportion 

0.80/0.20,  and prior is D(80,20) 

Factor means ~  N(μ, 0.10), where μ = population value 

Factor variances and covariances ~ IW(Ω, d), where Ω = population value, d = dimension of variance-covariance 

matrix plus 1 

31. Depaoli, 2013 Mplus “default 

noninformative” priors  

*  Bayes Naive 

Mplus default priors on all parameters 

Default prior for class proportions: D(10,10,10) 
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Note. Prior distributions when and as given in text or appendix of the included studies. Prior distributions are specified on the variance, unless stated otherwise. i inverse scale 

parameter, p = precision (inverse variance) is used. “Between quotation marks” = wording used by original authors to describe these prior distributions. Bold = the category the 

priors were assigned to in the current study (Bayes Thoughtful, Bayes Naive, Bayes Data dependent). Abbreviations prior distributions: D = Dirichlet, Exp. = Exponential, G = 

Gamma, IG = Inverse Gamma, IW = Inverse Wishart, Log-N = Log Normal, MVN = multivariate normal, N = Normal, U = Uniform, W = Wishart. Note that although the 

content of the table is formatted in a standardized way, we used the original wording for the parameters and prior distributions of the studies, to keep the original authors 

choices intact.   

“informative accurate” priors 

* Bayes Thoughtful  

 

Growth parameters: N(μ, σ2), where μ = population value, and σ2 = 5% of corresponding population value.  

Class proportions: Dirichlet prior with values indicating accurate knowledge of class sizes: for n = 150 and class 

proportions: 0.33/0.33/0.33, the prior is D(50,50,50), 0.45/0.45/0.10, the prior is D(67,67,15), 0.70/0.20/0.10, the prior 

is D(105,30,15) 

“data-driven informative” 

priors 

* Bayes Data dependent  

Growth parameters: N(μ, σ2), where μ and σ2 = average of maximum likelihood parameter estimate, and average 

variance respectively, across 1000 replications. 

Class proportions: D(1,1,1)  

“weakly informative” priors 

* Bayes Thoughtful   

Growth parameters: N(μ, σ2), where μ = population value, and σ2 = 50% of corresponding population value.  

Class proportions: D(1,1,1) 

“partial informative” priors 

* Bayes Thoughtful 

Intercept growth parameters: N(μ, σ2), where μ = population value, and σ2 = 5% of corresponding population value.  

For class proportions and slope growth parameters, Mplus default priors are used. 

Bayes “informative and 

inaccurate priors” 

* Bayes Thoughtful  

Growth parameters: N(μ, σ2), where σ2 = fixed to 50% of corresponding population value, and μ = population value 

minus 3 standard deviations based on the fixed variance parameter. 

For class proportions, Mplus default priors are used. 

32. Serang et al., 

2015 

“informative” priors for the 

mixture proportions  

* Bayes Thoughtful  

 

Means of 𝑏𝑗𝑖1, 𝑏𝑗𝑖2 and 𝑏𝑗𝑖3 for class 1: N(0, 0.001) p  “Both the mean intercept and the mean change to the upper 

asymptote parameters were restricted to be greater in the second class (β21 > β11; β22 > β12).”  

Means of 𝑏𝑗𝑖1 and 𝑏𝑗𝑖2 for class 2: N(0, 0.001) p  + difference, where difference ~ U[0,100] 

Mean of 𝑏𝑗𝑖3 for class 2: N(0, 0.001) p 

Variances of 𝑏𝑗𝑖1, 𝑏𝑗𝑖2 and 𝑏𝑗𝑖3 ~ W(1,3)  

Covariances of 𝑏𝑗𝑖1, 𝑏𝑗𝑖2 and 𝑏𝑗𝑖3 ~ W(0,3)  

Class proportions: D(160,40) 
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Appendix A2: R-code to reproduce the prior distributions as discussed in “Recommendations 

on how to Construct Thoughtful Priors”. 

### Figure 7A, intercept i2 

# Uniform prior distribution based on information of the 7-point Likert  

   scale that is used to measure M  

min <- 1 

max <- 7 

set.seed(122) 

x <- runif(5000000, min = min, max = max) 

plot(density(x), main = paste("Prior for intercept i2 ~ U[", min, ", ",   

   max, "]", sep=""), ylim = c(0, 0.20)) 

 

### Figure 7B, regression coefficient a 

# Normal prior distribution based on expert knowledge on implausible and  

  plausible values. Most implausible positive/negative value = mean +/-      

  3 standard deviations (SDs), which equals +/- 60 here 

implausible <- 60 

 

# To obtain the value of 1 SD, divide most implausible value by 3 SD 

sd <- implausible/3 

var <- round(sd^2, 2) 

 

# Because we specify a normal distribution, we can find the mean by taking   

  the mean of the most implausible negative and positive value 

mean <- mean(c(-60, 60))  

 

x <- rnorm(5000000, mean = mean, sd = sd) 

plot(density(x), main = paste("Prior for regression coefficient a ~ N(",     

  mean, ", ", var,")", sep=""), ylim = c(0, 0.025)) 

 

### Figure 7C, regression coefficient b 

# Normal prior distribution based on studies in literature  

# Values within this interval represent a null effect for this parameter:  

int_null_lower <- -0.4 

int_null_upper <- 0.4 

 

mean <- -1 

sd <- 3 

var <- sd^2 
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set.seed(122) 

x <- rnorm(5000000, mean = mean, sd = sd) 

 

# Check the probabilities that accompany the distribution based on the  

  aforementioned parameters (mean, sd, int_null_lower and   

  int_null_upper). Vary the sd until you get the right probabilities: 

 

x.negative<- sum(x < int_null_lower)/5000000 

x.null<- sum(x < int_null_upper & x > int_null_lower)/5000000 

x.positive<- sum(x > int_null_upper)/5000000 

 

# Check the probabilities  

x.negative #0.58 

x.null #0.10 

x.positive #0.32 

 

plot(density(x), main = paste("Prior for regression coefficient b ~ N(",     

mean, ", ", var,")", sep=""), ylim = c(0,0.15)) 

 

### Figure 7D, residual variance parameter 

# Inverse Gamma prior distribution for the residual variance parameter 

 

library(MCMCpack) 

# Inverse Gamma (IG) with shape and scale parameter. Note that in MCMC pack   

  an IG is specified with a shape and rate parameter; rate = 1/scale  

shape <- 10  

scale <- 20 

rate <- 1/scale 

set.seed(122) 

x <- rinvgamma(5000000, shape , rate) 

plot(density(x), main = paste("Prior for residual variance ~ IG(", shape,  

", ", scale,")", sep=""), ylim=c(0,270)) 

 

# Less informative IG prior  

shape <- 5 

scale <- 10 

rate <- 1/scale 

set.seed(122) 

x  <- rinvgamma(5000000, shape , rate) 

plot(density(x), main = paste("Prior for residual variance ~ IG(", shape,   

  ", ", scale,")", sep=""), ylim=c(0, 270)) 


