Category: Statistical

Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners.

This unique resource provides guidelines and tools for implementing solutions to issues that arise in small sample research, illustrating statistical methods that allow researchers to apply the optimal statistical model for their research question when the sample is too small.

Dealing with imperfect elicitation results

We provide an overview of the solutions we used for dealing with imperfect elicitation results, so that others can benefit from our experience. We present information about the nature of our project, the reasons for the imperfect results, and how we resolved these sup-ported by annotated R-syntax

Choice of Distance Measure Influences the Detection of Prior-Data Conflict

The present paper contrasts two related criteria for the evaluation of prior-data conflict: the Data Agreement Criterion (DAC; Bousquet, 2008) and the criterion of Nott et al. (2016). We investigated how the choice of a specific distance measure influences the detection of prior-data conflict.

Testing Small Variance Priors Using Prior-Posterior Predictive P-values

Muthen and Asparouhov (2012) propose to evaluate model fit in structural equation models based on approximate (using small variance priors) instead of exact equality of (combinations of) parameters to zero. This is an important development that adequately addresses Cohen’s (1994) “The earth is round (p < .05)”, which stresses that point null-hypotheses are so precise that small and irrelevant differences from the null-hypothesis may lead to their rejection.

Bayesian Evaluation of Inequality-Constrained Hypotheses in SEM Models using Mplus

Researchers in the behavioral and social sciences often have expectations that can be expressed in the form of inequality constraints among the parameters of a structural equation model resulting in an informative hypothesis. The questions they would like an answer to are “Is the hypothesis Correct” or “Is the hypothesis incorrect”?

A prior predictive loss function for the evaluation of inequality constrained hypotheses

In many types of statistical modeling, inequality constraints are imposed between the parameters of interest. As we will show in this paper, the DIC (i.e., posterior Deviance Information Criterium as proposed as a Bayesian model selection tool by Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) fails when comparing inequality constrained hypotheses.